
Embedded C++/Hybrid Mapping

Getting Started Guide

Copyright © 2005-2011 CODE SYNTHESIS TOOLS CC

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, version 1.2; with no Invariant Sections, no Front-Cover Texts
and no Back-Cover Texts.

This document is available in the following formats: XHTML, PDF, and PostScript.

http://www.codesynthesis.com/licenses/fdl-1.2.txt
http://www.codesynthesis.com/projects/xsde/documentation/xsde.xhtml
http://www.codesynthesis.com/projects/xsde/documentation/cxx/parser/guide/index.xhtml
http://www.codesynthesis.com/projects/xsde/documentation/cxx/serializer/guide/index.xhtml

Table of Contents
................... 1Preface
.............. 1About This Document
............... 1More Information
................. 11 Introduction
.............. 11.1 Mapping Overview
................. 31.2 Benefits
............... 42 Hello World Example
.......... 42.1 Writing XML Document and Schema
............ 52.2 Translating Schema to C++
........... 72.3 Implementing Application Logic
............. 82.4 Compiling and Running
.............. 92.5 Adding Serialization
.............. 122.6 A Minimal Version
............... 173 Mapping Configuration
............ 183.1 Standard Template Library
............ 193.2 Input/Output Stream Library
............... 193.3 C++ Exceptions
............. 193.4 XML Schema Validation
.............. 203.5 64-bit Integer Type
............ 203.6 Parser and Serializer Reuse
............. 203.7 Support for Polymorphism
.............. 233.8 Custom Allocators
............. 254 Working with Object Models
................ 294.1 Namespaces
.............. 294.2 Memory Management
............... 324.3 Enumerations
............. 334.4 Attributes and Elements
................ 474.5 Compositors
............ 554.6 Accessing the Object Model
............ 564.7 Modifying the Object Model
......... 584.8 Creating the Object Model from Scratch
............ 604.9 Customizing the Object Model
............ 674.10 Polymorphic Object Models
........... 725 Mapping for Built-In XML Schema Types
.............. 775.1 Mapping for QName
.......... 815.2 Mapping for NMTOKENS and IDREFS
....... 815.3 Mapping for base64Binary and hexBinary
............. 855.4 Time Zone Representation
.............. 865.5 Mapping for date
............. 875.6 Mapping for dateTime

iJanuary 2011 Embedded C++/Hybrid Mapping Getting Started Guide

Table of Contents

.............. 885.7 Mapping for duration

................ 895.8 Mapping for gDay

............... 905.9 Mapping for gMonth

.............. 915.10 Mapping for gMonthDay

............... 925.11 Mapping for gYear

............. 925.12 Mapping for gYearMonth

............... 935.13 Mapping for time

.............. 945.14 Mapping for anyType

................ 966 Parsing and Serialization

............ 996.1 Customizing Parsers and Serializers

................ 1047 Binary Representation

........... 1057.1 CDR (Common Data Representation)

............ 1067.2 XDR (eXternal Data Representation)

.............. 1087.3 Custom Representations

January 2011ii Embedded C++/Hybrid Mapping Getting Started Guide

Table of Contents

Preface

About This Document

The goal of this document is to provide you with an understanding of the C++/Hybrid program-
ming model and allow you to efficiently evaluate XSD/e against your project’s technical require-
ments. As such, this document is intended for embedded C++ developers and software architects
who are looking for an embedded XML processing solution. Prior experience with XML and
C++ is required to understand this document. Basic understanding of XML Schema is advanta-
geous but not expected or required.

More Information

Beyond this guide, you may also find the following sources of information useful:

XSD/e Compiler Command Line Manual
Embedded C++/Parser Mapping Getting Started Guide. The C++/Hybrid mapping uses
C++/Parser for XML parsing.
Embedded C++/Serializer Mapping Getting Started Guide. The C++/Hybrid mapping uses
C++/Serializer for XML serialization.
The INSTALL file in the XSD/e distribution provides build instructions for various plat-
forms.
The examples/cxx/hybrid/ directory in the XSD/e distribution contains a collection
of examples and a README file with an overview of each example.
The xsde-users mailing list is the place to ask technical questions about XSD/e and the
Embedded C++/Hybrid mapping. Furthermore, the archives may already have answers to
some of your questions.

1 Introduction
Welcome to CodeSynthesis XSD/e and the Embedded C++/Hybrid mapping. XSD/e is a validat-
ing XML parser/serializer and data binding generator for mobile and embedded systems. Embed-
ded C++/Hybrid is a W3C XML Schema to C++ mapping that represents the data stored in XML
as a light-weight, statically-typed, in-memory object model.

1.1 Mapping Overview

Based on a formal description of an XML vocabulary (schema), the C++/Hybrid mapping
produces a tree-like data structure suitable for in-memory processing. The core of the mapping
consists of C++ classes that constitute the object model and are derived from types defined in
XML Schema. The C++/Hybrid mapping uses the APIs provided by the Embedded C++/Parser

1January 2011 Embedded C++/Hybrid Mapping Getting Started Guide

Preface

http://www.codesynthesis.com/projects/xsde/documentation/xsde.xhtml
http://www.codesynthesis.com/projects/xsde/documentation/cxx/parser/guide/index.xhtml
http://www.codesynthesis.com/projects/xsde/documentation/cxx/serializer/guide/index.xhtml
http://www.codesynthesis.com/mailman/listinfo/xsde-users
http://www.codesynthesis.com/pipermail/xsde-users/
http://www.codesynthesis.com/products/xsde/c++/parser/

and Embedded C++/Serializer mappings to perform validation and parsing of XML to the object
model and validation and serialization of the object model to XML. The following diagram illus-
trates the high-level architecture of the C++/Hybrid mapping:

The use of well-defined APIs presented by the C++/Parser and C++/Serializer mappings for
XML parsing and serialization allows a number of advanced techniques, for example, customiza-
tion of parsing and serialization code, filtering of XML during parsing or object model during
serialization, as well as the hybrid, partially event-driven, partially in-memory processing where
the XML document is delivered to the application as parts of the object model. The last feature
combines the ease and convenience of the in-memory processing model with the ability to mini-
mize the use of RAM and process documents that would otherwise not fit into memory.

Besides reading from and writing to XML, the C++/Hybrid mapping also supports saving the
object model to and loading it from a number of predefined as well as custom binary formats.
Binary representations contain only the data without any meta information or markup. Conse-
quently, saving to and loading from a binary format can be an order of magnitude faster as well as
result in a much smaller application footprint compared to parsing and serializing the same data
in XML. Furthermore, the resulting representation is normally several times smaller than the
equivalent XML.

The Embedded C++/Hybrid mapping was specifically designed and optimized for mobile and
embedded systems where hardware constraints require high efficiency and economical use of
resources. As a result, the generated parsing and serialization code is 2-10 times faster than
general-purpose XML processors while at the same time maintaining extremely low static and
dynamic memory footprints. For example, an executable that performs validating XML parsing
and serialization can be as small as 150KB in size. The size can be further reduced by disabling
support for parsing or serialization as well as XML Schema validation.

January 20112 Embedded C++/Hybrid Mapping Getting Started Guide

1.1 Mapping Overview

http://www.codesynthesis.com/products/xsde/c++/serializer/

The generated code and the runtime library are also highly-portable and, in their minimal config-
uration, can be used without STL, RTTI, iostream, C++ exceptions, and with the minimal use of
C++ templates.

A typical application that uses the C++/Hybrid mapping for XML processing performs the
following three steps: it first reads (parses) an XML document to an in-memory object model, it
then performs some useful computations on that object model which may involve modification of
the model, and finally it may write (serialize) the modified object model back to XML. The next
chapter presents a simple application that performs these three steps. The following chapters
describe the Embedded C++/Hybrid mapping in more detail.

1.2 Benefits

Traditional XML access APIs such as Document Object Model (DOM) or Simple API for XML
(SAX) as well as general-purpose XML Schema validators have a number of drawbacks that
make them less suitable for creating mobile and embedded XML processing applications. These
drawbacks include:

Generic representation of XML in terms of elements, attributes, and text forces an applica-
tion developer to write a substantial amount of bridging code that identifies and transforms
pieces of information encoded in XML to a representation more suitable for consumption by
the application logic.
String-based flow control defers error detection to runtime. It also reduces code readability
and maintainability.
Lack of type safety and inefficient use of resources due to the data being represented as text.
Extra validation code that is not used by the application.
Resulting applications are hard to debug, change, and maintain.

In contrast, a light-weight, statically-typed, vocabulary-specific object model produced by the
Embedded C++/Hybrid mapping allows you to operate in your domain terms instead of the
generic elements, attributes, and text. Native data types are used to store the XML data (for
example, integers are stored as integers, not as text). Validation code is included only for XML
Schema constructs that are used in the application. This results in efficient use of resources and
compact object code.

Furthermore, static typing helps catch errors at compile-time rather than at run-time. Automatic
code generation frees you for more interesting tasks (such as doing something useful with the
information stored in the XML documents) and minimizes the effort needed to adapt your appli-
cations to changes in the document structure. To summarize, the C++/Hybrid object model has
the following key advantages over generic XML access APIs:

3January 2011 Embedded C++/Hybrid Mapping Getting Started Guide

1.2 Benefits

Ease of use. The generated code hides all the complexity associated with parsing and serial-
izing XML. This includes navigating the structure and converting between the text represen-
tation and data types suitable for manipulation by the application logic.
Natural representation. The object representation allows you to access the XML data using
your domain vocabulary instead of generic elements, attributes, and text.
Concise code. With the object representation the application implementation is simpler and
thus easier to read and understand.
Safety. The generated object model is statically typed and uses functions instead of strings
to access the information. This helps catch programming errors at compile-time rather than
at runtime.
Maintainability. Automatic code generation minimizes the effort needed to adapt the appli-
cation to changes in the document structure. With static typing, the C++ compiler can
pin-point the places in the client code that need to be changed.
Efficiency. If the application makes repetitive use of the data extracted from XML, then the
C++/Hybrid object model is more efficient because the navigation is performed using func-
tion calls rather than string comparisons and the XML data is extracted only once. The
runtime memory usage is also reduced due to more efficient data storage (for instance,
storing numeric data as integers instead of strings) as well as the static knowledge of cardi-
nality constraints.

Furthermore, the generated XML parsing and serialization code combines validation and
data-to-text conversion in a single step. This makes the generated code much more efficient
than traditional architectures with separate stages for validation and data conversion.

2 Hello World Example
In this chapter we will examine how to parse, access, modify, and serialize a very simple XML
document using the generated C++/Hybrid object model as well as the XML parser and serializer.
The code presented in this chapter is based on the hello example which can be found in the
examples/cxx/hybrid/ directory of the XSD/e distribution.

2.1 Writing XML Document and Schema

First, we need to get an idea about the structure of the XML documents we are going to process.
Our hello.xml , for example, could look like this:

January 20114 Embedded C++/Hybrid Mapping Getting Started Guide

2 Hello World Example

<?xml version="1.0"?>
<hello>

 <greeting>Hello</greeting>

 <name>sun</name>
 <name>moon</name>
 <name>world</name>

</hello>

Then we can write a description of the above XML in the XML Schema language and save it into
hello.xsd :

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:complexType name="hello">
 <xs:sequence>
 <xs:element name="greeting" type="xs:string"/>
 <xs:element name="name" type="xs:string" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

 <xs:element name="hello" type="hello"/>

</xs:schema>

Even if you are not familiar with XML Schema, it should be easy to connect declarations in
hello.xsd to elements in hello.xml . The hello type is defined as a sequence of the
nested greeting and name elements. Note that the term sequence in XML Schema means that
elements should appear in a particular order as opposed to appearing multiple times. The name
element has its maxOccurs property set to unbounded which means it can appear multiple
times in an XML document. Finally, the globally-defined hello element prescribes the root
element for our vocabulary. For an easily-approachable introduction to XML Schema refer to
XML Schema Part 0: Primer.

The above schema is a specification of our XML vocabulary; it tells everybody what valid docu-
ments of our XML-based language should look like. The next step is to compile the schema to
generate the object model and the parser.

2.2 Translating Schema to C++

Now we are ready to translate our hello.xsd to C++. To do this we invoke the XSD/e
compiler from a terminal (UNIX) or a command prompt (Windows):

5January 2011 Embedded C++/Hybrid Mapping Getting Started Guide

2.2 Translating Schema to C++

http://www.w3.org/TR/xmlschema-0/

$ xsde cxx-hybrid --generate-parser --generate-aggregate hello.xsd

This invocation of the XSD/e compiler produces three pairs of C++ files: hello.hxx and
hello.cxx , hello-pskel.hxx and hello-pskel.cxx , as well as
hello-pimpl.hxx and hello-pimpl.cxx . The first pair contains the object model
classes. The second pair contains parser skeletons. Parser skeletons are generated by the
C++/Parser mapping which is automatically invoked by C++/Hybrid. For now we can ignore
parser skeletons except that we need to compile them and link the result to our application. The
last pair of files contains parser implementations. They implement the parser skeletons to create
and populate the object model types from XML data. The generation of parser skeletons and
parser implementations is requested with the --generate-parser XSD/e compiler option.

You may be wondering what is the --generate-aggregate option for. This option instructs
the XSD/e compiler to generate parser and, as we will see later, serializer aggregates. The gener-
ated parser implementation files mentioned above contain a separate parser implementation class
for each type defined in XML Schema. These parser implementations need to be instantiated and
connected before we can use them to parse an XML document. When you specify the
--generate-aggregate option, the XSD/e compiler generates a class (in the parser imple-
mentation files), called parser aggregate, for each global element defined in the schema (you can
also generate a parser aggregate for a type as well as control for which global elements parser
aggregates are generated, see the XSD/e Compiler Command Line Manual for more information).
A parser aggregate instantiates and connects all the necessary parser implementations needed to
parse an XML document with a given root element. We will see how to use the parser aggregate
for the hello root element in the next section.

The following code fragment is taken from hello.hxx ; it shows what the C++ object model
for our "Hello World" XML vocabulary looks like:

class hello
{
public:
 hello ();

 // greeting
 //
 const std::string&
 greeting () const;

 std::string&
 greeting ();

 void
 greeting (const std::string&);

 // name
 //
 typedef xml_schema::string_sequence name_sequence;

January 20116 Embedded C++/Hybrid Mapping Getting Started Guide

2.2 Translating Schema to C++

http://www.codesynthesis.com/projects/xsde/documentation/xsde.xhtml

 typedef name_sequence::iterator name_iterator;
 typedef name_sequence::const_iterator name_const_iterator;

 const name_sequence&
 name () const;

 name_sequence&
 name ();

private:
 ...
};

The hello C++ class corresponds to the hello XML Schema type. For each element in this
type a set of accessor and modifier functions are generated inside the hello class. Note that the
member functions for the greeting and name elements are different because of the different
cardinalities these two elements have (greeting is a required single element and name is a
sequence of elements).

It is also evident that the built-in XML Schema type string is mapped to std::string . The
string_sequence class that is used in the name_sequence type definition has an interface
similar to std::vector . The mapping between the built-in XML Schema types and C++ types
is described in more detail in Chapter 5, "Mapping for Built-in XML Schema Types".

2.3 Implementing Application Logic

At this point we have all the parts we need to do something useful with the information stored in
our XML document:

#include <iostream>

#include "hello.hxx"
#include "hello-pimpl.hxx"

using namespace std;

int
main (int argc, char* argv[])
{
 try
 {
 // Parse.
 //
 hello_paggr hello_p;
 xml_schema::document_pimpl doc_p (hello_p.root_parser (),
 hello_p.root_name ());
 hello_p.pre ();
 doc_p.parse (argv[1]);

7January 2011 Embedded C++/Hybrid Mapping Getting Started Guide

2.3 Implementing Application Logic

 hello* h = hello_p.post ();

 // Print what we’ve got.
 //
 for (hello::name_const_iterator i = h->name ().begin ();
 i != h->name ().end ();
 ++i)
 {
 cout << h->greeting () << ", " << *i << "!" << endl;
 }

 delete h;
 }
 catch (const xml_schema::parser_exception& e)
 {
 cerr << argv[1] << ":" << e.line () << ":" << e.column ()
 << ": " << e.text () << endl;
 return 1;
 }
}

The first part of our application creates a document parser and parses the XML file specified in
the command line to the object model. The hello_paggr class is the parser aggregate class we
discussed earlier. Parsing is covered in more detail in Chapter 6, "Parsing and Serialization". The
second part uses the returned object model to iterate over names and print a greeting line for each
of them. We also catch and print the xml_schema::parser_exception exception in case
something goes wrong.

2.4 Compiling and Running

After saving our application from the previous section in driver.cxx , we are ready to compile
our first program and run it on the test XML document. On UNIX this can be done with the
following commands:

$ c++ -I.../libxsde -c driver.cxx hello.cxx hello-pskel.cxx \
 hello-pimpl.cxx

$ c++ -o driver driver.o hello.o hello-pskel.o hello-pimpl.o \
 .../libxsde/xsde/libxsde.a

$./driver hello.xml
Hello, sun!
Hello, moon!
Hello, world!

Here .../libxsde represents the path to the libxsde directory in the XSD/e distribution.

January 20118 Embedded C++/Hybrid Mapping Getting Started Guide

2.4 Compiling and Running

We can also test the error handling. To test XML well-formedness checking, we can try to parse
hello.hxx :

$./driver hello.hxx
hello.hxx:1:0: not well-formed (invalid token)

We can also try to parse a valid XML but not from our vocabulary, for example hello.xsd :

$./driver hello.xsd
hello.xsd:2:57: unexpected element encountered

2.5 Adding Serialization

While parsing and accessing the XML data may be everything you need, there are applications
that require creating new or modifying existing XML documents. To request the generation of
serialization support we will need to add the --generate-serializer option to our XSD/e
compiler invocation:

$ xsde cxx-hybrid --generate-parser --generate-serializer \
 --generate-aggregate hello.xsd

This will result in two additional pairs of C++ files: hello-sskel.hxx and
hello-sskel.cxx , as well as hello-simpl.hxx and hello-simpl.cxx . Similar to
the parser files, the first pair contains serializer skeletons (generated by the C++/Serializer
mapping) and the second pair contains serializer implementations as well as the serializer aggre-
gate for the hello root element.

Let us first examine an application that modifies an existing object model and serializes it back to
XML:

#include <iostream>

#include "hello.hxx"
#include "hello-pimpl.hxx"
#include "hello-simpl.hxx"

using namespace std;

int
main (int argc, char* argv[])
{
 try
 {
 // Parse.
 //
 hello_paggr hello_p;
 xml_schema::document_pimpl doc_p (hello_p.root_parser (),
 hello_p.root_name ());

9January 2011 Embedded C++/Hybrid Mapping Getting Started Guide

2.5 Adding Serialization

 hello_p.pre ();
 doc_p.parse (argv[1]);
 hello* h = hello_p.post ();

 // Change the greeting phrase.
 //
 h->greeting ("Hi");

 // Add another entry to the name sequence.
 //
 h->name ().push_back ("mars");

 // Serialize the modified object model to XML.
 //
 hello_saggr hello_s;
 xml_schema::document_simpl doc_s (hello_s.root_serializer (),
 hello_s.root_name ());
 hello_s.pre (*h);
 doc_s.serialize (cout, xml_schema::document_simpl::pretty_print);
 hello_s.post ();

 delete h;
 }
 catch (const xml_schema::parser_exception& e)
 {
 cerr << argv[1] << ":" << e.line () << ":" << e.column ()
 << ": " << e.text () << endl;
 return 1;
 }
 catch (const xml_schema::serializer_exception& e)
 {
 cerr << "error: " << e.text () << endl;
 return 1;
 }
}

First, our application parses an XML document and obtains its object model as in the previous
example. Then it changes the greeting string and adds another entry to the list of names. Finally,
it creates a document serializer and serializes the object model back to XML. The
hello_saggr class is the serializer aggregate class we discussed earlier.

The resulting XML is written to the standard output (cout) for us to inspect. We could have also
written the result to a file or memory buffer by creating an instance of std::ofstream or
std::ostringstream and passing it to serialize() instead of cout . The second argu-
ment in the call to serialize() is a flag that requests pretty-printing of the resulting XML
document. You would normally specify this flag during testing to obtain easily-readable XML
and remove it in production to get faster serialization and smaller documents. Serialization is
covered in more detail in Chapter 6, "Parsing and Serialization".

January 201110 Embedded C++/Hybrid Mapping Getting Started Guide

2.5 Adding Serialization

If we now compile and run this application (don’t forget to compile and link
hello-sskel.cxx and hello-simpl.cxx), we will see the output as shown in the follow-
ing listing:

<hello>
 <greeting>Hi</greeting>
 <name>sun</name>
 <name>moon</name>
 <name>world</name>
 <name>mars</name>
</hello>

We can also test XML Schema validation. We can "accidently" remove all the names from the
object model by adding the following after: push_back ("mars") :

h->name ().clear ();

This will violate our vocabulary specification which requires at least one name element to be
present. If we make the above change and recompile our application, we will get the following
output:

$./driver hello.xml
error: expected element not encountered

It is also possible to create and serialize an object model from scratch as shown in the following
example. For this case we can remove the --generate-parser option since we don’t need
support for XML parsing.

#include <sstream>
#include <iostream>

#include "hello.hxx"
#include "hello-simpl.hxx"

using namespace std;

int
main (int argc, char* argv[])
{
 try
 {
 hello h;
 h.greeting ("Hi");

 hello::name_sequence& ns = h.name ();
 ns.push_back ("Jane");
 ns.push_back ("John");

 // Serialize the object model to XML.

11January 2011 Embedded C++/Hybrid Mapping Getting Started Guide

2.5 Adding Serialization

 //
 hello_saggr hello_s;
 xml_schema::document_simpl doc_s (hello_s.root_serializer (),
 hello_s.root_name ());
 ostringstream ostr;

 hello_s.pre (h);
 doc_s.serialize (ostr, xml_schema::document_simpl::pretty_print);
 hello_s.post ();

 cout << ostr.str () << endl;
 }
 catch (const xml_schema::serializer_exception& e)
 {
 cerr << "error: " << e.text () << endl;
 return 1;
 }
}

In this example we used the generated default constructor to create an empty instance of type
hello . We then set greeting and, to reduce typing, we obtained a reference to the name
sequence which we used to add a few names. The serialization part is identical to the previous
example except this time we first save the XML representation into a string. If we compile and
run this program, it produces the following output:

<hello>
 <greeting>Hi</greeting>
 <name>Jane</name>
 <name>John</name>
</hello>

2.6 A Minimal Version

The previous sections showed a number of examples that relied on STL for strings, iostream of
input/output and C++ exceptions for error handling. As was mentioned in the introduction and
will be discussed in further detail in the next chapter, the C++/Hybrid mapping can be configured
only to rely on the minimal subset of C++. In this section we will implement an example that
parses, prints, modifies and serializes the object model without relying on STL, iostream, or C++
exceptions.

The first step is to instruct the XSD/e compiler not to use any of the above features in the gener-
ated code. You may also need to re-configure and rebuild the XSD/e runtime library
(libxsde.a) to disable STL, iostream, and exceptions.

$ xsde cxx-hybrid --no-stl --no-iostream --no-exceptions \
 --generate-parser --generate-serializer --generate-aggregate \
 hello.xsd

January 201112 Embedded C++/Hybrid Mapping Getting Started Guide

2.6 A Minimal Version

If you now study the generated hello.hxx file, you will notice that the use of std::string
type is replaced with char* . When STL is disabled, built-in XML Schema type string is
mapped to a C string. The following listing presents the content of driver.cxx in full:

#include <stdio.h>

#include "people.hxx"

#include "people-pimpl.hxx"
#include "people-simpl.hxx"

using namespace std;

struct writer: xml_schema::writer
{
 virtual bool
 write (const char* s, size_t n)
 {
 return fwrite (s, n, 1, stdout) == 1;
 }

 virtual bool
 flush ()
 {
 return fflush (stdout) == 0;
 }
};

int
main (int argc, char* argv[])
{
 // Open the file or use STDIN.
 //
 FILE* f = fopen (argv[1], "rb");

 if (f == 0)
 {
 fprintf (stderr, "%s: unable to open\n", argc);
 return 1;
 }

 // Parse.
 //
 using xml_schema::parser_error;

 parser_error pe;
 bool io_error = false;
 hello* h = 0;

 do
 {

13January 2011 Embedded C++/Hybrid Mapping Getting Started Guide

2.6 A Minimal Version

 hello_paggr hello_p;
 xml_schema::document_pimpl doc_p (hello_p.root_parser (),
 hello_p.root_name ());
 if (pe = doc_p._error ())
 break;

 hello_p.pre ();

 if (pe = hello_p._error ())
 break;

 char buf[4096];

 do
 {
 size_t s = fread (buf, 1, sizeof (buf), f);

 if (s != sizeof (buf) && ferror (f))
 {
 io_error = true;
 break;
 }

 doc_p.parse (buf, s, feof (f) != 0);
 pe = doc_p._error ();

 } while (!pe && !feof (f));

 if (io_error || pe)
 break;

 h = hello_p.post ();
 pe = hello_p._error ();

 } while (false);

 fclose (f);

 // Handle parsing errors.
 //
 if (io_error)
 {
 fprintf (stderr, "%s: read failure\n", argc);
 return 1;
 }

 if (pe)
 {
 switch (pe.type ())
 {
 case parser_error::sys:

January 201114 Embedded C++/Hybrid Mapping Getting Started Guide

2.6 A Minimal Version

 {
 fprintf (stderr, "%s: %s\n", argc, pe.sys_text ());
 break;
 }
 case parser_error::xml:
 {
 fprintf (stderr, "%s:%lu:%lu: %s\n",
 argc, pe.line (), pe.column (), pe.xml_text ());
 break;
 }
 case parser_error::schema:
 {
 fprintf (stderr, "%s:%lu:%lu: %s\n",
 argc, pe.line (), pe.column (), pe.schema_text ());
 break;
 }
 default:
 break;
 }

 return 1;
 }

 // Print what we’ve got.
 //
 for (hello::name_const_iterator i = h->name ().begin ();
 i != h->name ().end ();
 ++i)
 {
 printf ("%s, %s!\n", h->greeting (), *i);
 }

 using xml_schema::strdupx;

 // Change the greeting phrase.
 //
 char* str = strdupx ("Hi");

 if (str == 0)
 {
 fprintf (stderr, "error: no memory\n");
 delete h;
 return 1;
 }

 h->greeting (str);

 // Add another entry to the name sequence.
 //
 str = strdupx ("mars");

15January 2011 Embedded C++/Hybrid Mapping Getting Started Guide

2.6 A Minimal Version

 if (str == 0)
 {
 fprintf (stderr, "error: no memory\n");
 delete h;
 return 1;
 }

 if (h->name ().push_back (str) != 0)
 {
 // The sequence has already freed str.
 //
 fprintf (stderr, "error: no memory\n");
 delete h;
 return 1;
 }

 // Serialize.
 //
 using xml_schema::serializer_error;

 serializer_error se;
 writer w;

 do
 {
 hello_saggr hello_s;
 xml_schema::document_simpl doc_s (hello_s.root_serializer (),
 hello_s.root_name ());
 if (se = doc_s._error ())
 break;

 hello_s.pre (*h);

 if (se = hello_s._error ())
 break;

 doc_s.serialize (w, xml_schema::document_simpl::pretty_print);

 if (se = doc_s._error ())
 break;

 hello_s.post ();

 se = hello_s._error ();

 } while (false);

 delete h;

 // Handle serializer errors.
 //

January 201116 Embedded C++/Hybrid Mapping Getting Started Guide

2.6 A Minimal Version

 if (se)
 {
 switch (se.type ())
 {
 case serializer_error::sys:
 {
 fprintf (stderr, "error: %s\n", se.sys_text ());
 break;
 }
 case serializer_error::xml:
 {
 fprintf (stderr, "error: %s\n", se.xml_text ());
 break;
 }
 case serializer_error::schema:
 {
 fprintf (stderr, "error: %s\n", se.schema_text ());
 break;
 }
 default:
 break;
 }

 return 1;
 }
}

The parsing and serialization parts of the above example got quite a bit more complex due to the
lack of exceptions and iostream support. For more information on what’s going on there, refer to
Chapter 6, "Parsing and Serialization". On the other hand, the access and modification of the
object model stayed relatively unchanged. The only noticeable change is the use of the
xml_schema::strdupx function to create C strings from string literals. We have to use this
function because the object model assumes ownership of the strings passed. We also cannot use
the standard C strdup because the object model expects the strings to be allocated with C++
operator new[] while C strdup uses malloc (on most implementations operator new is
implemented in terms of malloc so you can probably use strdup if you really want to).

3 Mapping Configuration
The Embedded C++/Hybrid mapping has a number of configuration parameters that determine
the overall properties and behavior of the generated code, such as the use of Standard Template
Library (STL), Input/Output Stream Library (iostream), C++ exceptions, XML Schema valida-
tion, 64-bit integer types, as well as parser and serializer implementation reuse styles. In the
previous chapter we have already got an overview of the changes to the generated code that
happen when we disable STL, iostream, and C++ exceptions. In this chapter we will discuss these
and other configuration parameters in more detail.

17January 2011 Embedded C++/Hybrid Mapping Getting Started Guide

3 Mapping Configuration

In order to enable or disable a particular feature, the corresponding configuration parameter
should be set accordingly in the XSD/e runtime library as well as specified during schema compi-
lation with the XSD/e command line options as described in the XSD/e Compiler Command Line
Manual.

While the XML documents can use various encodings, the C++/Hybrid object model always
stores character data in the same encoding, called application encoding. The application encoding
can either be UTF-8 (default) or ISO-8859-1. To select a particular encoding, configure the
XSD/e runtime library accordingly and pass the --char-encoding option to the XSD/e
compiler when translating your schemas.

When using ISO-8859-1 as the application encoding, XML documents being parsed may contain
characters with Unicode values greater than 0xFF which are unrepresentable in the ISO-8859-1
encoding. By default, in such situations parsing will terminate with an error. However, you can
suppress the error by providing a replacement character that should be used instead of unrepre-
sentable characters, for example:

xml_schema::iso8859_1::unrep_char (’?’);

To revert to the default behavior, set the replacement character to ’\0’ .

The underlying XML parser used by the mapping includes built-in support for XML documents
encoded in UTF-8, UTF-16, ISO-8859-1, and US-ASCII. Other encodings can be supported by
providing application-specific decoder functions. The underlying XML serializer used by
C++/Hybrid produces the resulting XML documents in the UTF-8 encoding.

3.1 Standard Template Library

To disable the use of STL you will need to configure the XSD/e runtime without support for STL
as well as pass the --no-stl option to the XSD/e compiler when translating your schemas.

When STL is disabled, all string-based XML Schema types (see Chapter 5, "Mapping for Built-In
XML Schema Types") are mapped to C-style char* instead of std::string . In this configu-
ration when you set an element or attribute value of a string-based type, the object model assumes
ownership of the string and expects that it was allocated with operator new[] . To simplify
creation of such strings from string literals, the generated code provides the strdupx and
strndupx functions in the xml_schema namespace. These functions are similar to C
strdup and strndup except that they use operator new[] instead of malloc to allocate the
string:

January 201118 Embedded C++/Hybrid Mapping Getting Started Guide

3.1 Standard Template Library

http://www.codesynthesis.com/projects/xsde/documentation/xsde.xhtml
http://www.codesynthesis.com/projects/xsde/documentation/xsde.xhtml

namespace xml_schema
{
 char*
 strdupx (const char*);

 char*
 strndupx (const char*, size_t);
}

3.2 Input/Output Stream Library

To disable the use of iostream you will need to configure the XSD/e runtime library without
support for iostream as well as pass the --no-iostream option to the XSD/e compiler when
translating your schemas. When iostream is disabled, a number of overloaded parse() and
serialize() functions in the document parser (xml_schema::document_pimpl) and
document serializer (xml_schema::document_simpl) become unavailable. See Chapter 7,
"Document Parser and Error Handling" in the Embedded C++/Parser Mapping Getting Started
Guide and Chapter 8, "Document Serializer and Error Handling" in the Embedded C++/Serializer
Mapping Getting Started Guide for details.

3.3 C++ Exceptions

To disable the use of C++ exceptions, you will need to configure the XSD/e runtime without
support for exceptions as well as pass the --no-exceptions option to the XSD/e compiler
when translating your schemas. When C++ exceptions are disabled, the error conditions that may
arise while parsing, serializing, and modifying the object model are indicated with error codes
instead of exceptions. For more information on error handling during parsing, see Chapter 7,
"Document Parser and Error Handling" in the Embedded C++/Parser Mapping Getting Started
Guide. For more information on error handling during serialization, see Chapter 8, "Document
Serializer and Error Handling" in the Embedded C++/Serializer Mapping Getting Started Guide.
For more information on error handling in the object model, see Chapter 4, "Working with Object
Models" below.

3.4 XML Schema Validation

By default, XML Schema validation is enabled during both parsing and serialization. To disable
validation during parsing, you will need to configure the XSD/e runtime to disable support for
validation in the C++/Parser mapping as well as pass the --suppress-parser-val option
to the XSD/e compiler when translating your schemas. To disable validation during serialization,
you will need to configure the XSD/e runtime to disable support for validation in the C++/Serial-
izer mapping as well as pass the --suppress-serializer-val option to the XSD/e
compiler when translating your schemas. If you are disabling validation during both parsing and
serialization, you can use the --suppress-validation option instead of the two options

19January 2011 Embedded C++/Hybrid Mapping Getting Started Guide

3.2 Input/Output Stream Library

http://www.codesynthesis.com/projects/xsde/documentation/cxx/parser/guide/index.xhtml#7
http://www.codesynthesis.com/projects/xsde/documentation/cxx/parser/guide/index.xhtml#7
http://www.codesynthesis.com/projects/xsde/documentation/cxx/serializer/guide/index.xhtml#8
http://www.codesynthesis.com/projects/xsde/documentation/cxx/parser/guide/index.xhtml#7
http://www.codesynthesis.com/projects/xsde/documentation/cxx/parser/guide/index.xhtml#7
http://www.codesynthesis.com/projects/xsde/documentation/cxx/serializer/guide/index.xhtml#8
http://www.codesynthesis.com/projects/xsde/documentation/cxx/serializer/guide/index.xhtml#8

mentioned above.

Disabling XML Schema validation allows to further increase the parsing and serialization perfor-
mance as well as reduce footprint in cases where the data being parsed and/or serialized is known
to be valid.

3.5 64-bit Integer Type

By default the 64-bit long and unsignedLong built-in XML Schema types are mapped to the
64-bit long long and unsigned long long fundamental C++ types. To disable the use
of these types in the mapping you will need to configure the XSD/e runtime accordingly as well
as pass the --no-long-long option to the XSD/e compiler when translating your schemas.
When the use of 64-bit integral C++ types is disabled the long and unsignedLong XML
Schema built-in types are mapped to long and unsigned long fundamental C++ types.

3.6 Parser and Serializer Reuse

When one type in XML Schema inherits from another, it is often desirable to be able to reuse the
parser and serializer implementations corresponding to the base type in the parser and serializer
implementations corresponding to the derived type. XSD/e provides support for two reuse styles:
the so-called mixin (generated when the --reuse-style-mixin option is specified) and tiein
(generated by default) styles. The XSD/e runtime should be configured in accordance with the
reuse style used in the generated code. See Section 5.6, "Parser Reuse" in the Embedded
C++/Parser Mapping Getting Started Guide and Section 6.6, "Serializer Reuse" in the Embedded
C++/Serializer Mapping Getting Started Guide for details.

3.7 Support for Polymorphism

By default the XSD/e compiler generates non-polymorphic code. If your vocabulary uses XML
Schema polymorphism in the form of xsi:type and/or substitution groups, then you will need
to configure the XSD/e runtime with support for polymorphism, compile your schemas with the
--generate-polymorphic option to produce polymorphism-aware code, as well as pass
true as the last argument to the xml_schema::document_pimpl and
xml_schema::document_simpl constructors (see Chapter 6, "Parsing and Serialization"
for details). If some of your schemas do not require support for polymorphism then you can
compile them with the --runtime-polymorphic option and still use the XSD/e runtime
configured with polymorphism support.

The XSD/e compiler can often automatically determine which types are polymorphic based on
the substitution group declarations. However, if your XML vocabulary is not using substitution
groups or if substitution groups are defined in a separate schema, then you will need to use the
--polymorphic-type option to specify which types are polymorphic. When using this

January 201120 Embedded C++/Hybrid Mapping Getting Started Guide

3.5 64-bit Integer Type

http://www.codesynthesis.com/projects/xsde/documentation/cxx/parser/guide/index.xhtml#5.6
http://www.codesynthesis.com/projects/xsde/documentation/cxx/serializer/guide/index.xhtml#6.6

option you only need to specify the root of a polymorphic type hierarchy and the XSD/e compiler
will assume that all the derived types are also polymorphic. Also note that you need to specify
this option when compiling every schema file that references the polymorphic type. Consider the
following two schemas as an example:

<!-- base.xsd -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:complexType name="base">
 <xs:sequence>
 <xs:element name="b" type="xs:int"/>
 </xs:sequence>
 </xs:complexType>

 <!-- substitution group root -->
 <xs:element name="base" type="base"/>

</xs:schema>

<!-- derived.xsd -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <include schemaLocation="base.xsd"/>

 <xs:complexType name="derived">
 <xs:complexContent>
 <xs:extension base="base">
 <xs:sequence>
 <xs:element name="d" type="xs:string"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <xs:element name="derived" type="derived" substitutionGroup="base"/>

</xs:schema>

In this example we need to specify "--polymorphic-type base " when compiling both
schemas because the substitution group is declared in a schema other than the one defining type
base .

Another issue that may arise when compiling polymorphic schemas is the situation where the
XSD/e compiler is unaware of all the derivations of a polymorphic type while generating parser
and serializer aggregates. As a result, the generated code may not be able to parse and serialize
these "invisible" to the compiler types. The following example will help illustrate this case.
Consider a modified version of base.xsd from the above example:

21January 2011 Embedded C++/Hybrid Mapping Getting Started Guide

3.7 Support for Polymorphism

<!-- base.xsd -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:complexType name="base">
 <xs:sequence>
 <xs:element name="b" type="xs:int"/>
 </xs:sequence>
 </xs:complexType>

 <!-- substitution group root -->
 <xs:element name="base" type="base"/>

 <xs:complexType name="root">
 <xs:sequence>
 <xs:element ref="base" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

 <!-- document root -->
 <xs:element name="root" type="root"/>

</xs:schema>

Suppose we compile this schema as follows:

$ xsde cxx-hybrid --generate-parser --generate-serializer \
--generate-polymorphic --polymorphic-type base \
--generate-aggregate --root-element root base.xsd

The resulting parser and serializer aggregates for the root element will not include the parser
and serializer for the derived type that can be used instead of the base type. This is because
the XSD/e compiler has no knowledge of the derived ’s existence when compiling base.xsd .

There are two ways to overcome this problem. The easier but potentially slower approach is to
compile all your schemas at once, for example:

$ xsde cxx-hybrid --generate-parser --generate-serializer \
--generate-polymorphic --polymorphic-type base \
--generate-aggregate --root-element root base.xsd derived.xsd

This will make sure the XSD/e compiler "sees" all the derivations of the polymorphic types. The
other approach allows you to explicitly specify, with the --polymorphic-schema option,
additional schemas that may contain derivations of the polymorphic types. Using this approach
we would compile base.xsd and derived.xsd like this:

January 201122 Embedded C++/Hybrid Mapping Getting Started Guide

3.7 Support for Polymorphism

$ xsde cxx-hybrid --generate-parser --generate-serializer \
--generate-polymorphic --polymorphic-type base \
--generate-aggregate --root-element root \
--polymorphic-schema derived.xsd base.xsd

$ xsde cxx-hybrid --generate-parser --generate-serializer \
--generate-polymorphic --polymorphic-type base derived.xsd

For information on how to use object models with polymorphic types, refer to Section 4.10,
"Polymorphic Object Models".

3.8 Custom Allocators

By default the XSD/e runtime and generated code use the standard operators new and delete
to manage dynamic memory. However, it is possible to instead use custom allocator functions
provided by your application. To achieve this, configure the XSD/e runtime library to use custom
allocator functions as well as pass the --custom-allocator option to the XSD/e compiler
when translating your schemas. The signatures of the custom allocator functions that should be
provided by your application are listed below. Their semantics should be equivalent to the stan-
dard C malloc() , realloc() , and free() functions.

extern "C" void*
xsde_alloc (size_t);

extern "C" void*
xsde_realloc (void*, size_t);

extern "C" void
xsde_free (void*);

Note also that when custom allocators are enabled, any dynamically-allocated object of which the
XSD/e runtime or generated code assume ownership should be allocated using the custom alloca-
tion function. Similarly, if your application assumes ownership of any dynamically-allocated
object returned by the XSD/e runtime or the generated code, then such an object should be
disposed of using the custom deallocation function. To help with these tasks the generated
xml_schema namespace defines the following two helper functions and, if C++ exceptions are
enabled, automatic pointer class:

namespace xml_schema
{
 void*
 alloc (size_t);

 void
 free (void*);

 struct alloc_guard

23January 2011 Embedded C++/Hybrid Mapping Getting Started Guide

3.8 Custom Allocators

 {
 alloc_guard (void*);
 ~alloc_guard ();

 void*
 get () const;

 void
 release ();

 private:
 ...
 };
}

If C++ exceptions are disabled, these functions are equivalent to xsde_alloc() and
xsde_free() . If exceptions are enabled, xml_schema::alloc() throws
std::bad_alloc on memory allocation failure.

The following code fragment shows how to create and destroy a dynamically-allocated object
with custom allocators when C++ exceptions are disabled:

void* v = xml_schema::alloc (sizeof (type));

if (v == 0)
{
 // Handle out of memory condition.
}

type* x = new (v) type (1, 2);

...

if (x)
{
 x->~type ();
 xml_schema::free (x);
}

The equivalent code fragment for configurations with C++ exceptions enabled is shown below:

xml_schema::alloc_guard g (xml_schema::alloc (sizeof (type)));
type* x = new (g.get ()) type (1, 2);
g.release ();

...

if (x)

January 201124 Embedded C++/Hybrid Mapping Getting Started Guide

3.8 Custom Allocators

{
 x->~type ();
 xml_schema::free (x);
}

For a complete example that shows how to use custom allocators, see the allocator example
which can be found in the examples/cxx/hybrid/ directory of the XSD/e distribution.

4 Working with Object Models
As we have seen in the previous chapters, the XSD/e compiler generates a C++ class for each
type defined in XML Schema. Together these classes constitute an object model for an XML
vocabulary. In this chapter we will take a closer look at different parts that comprise an object
model class as well as how to create, access, and modify object models.

In this chapter we will use the following schema that describes a collection of person records. We
save it in people.xsd :

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:simpleType name="gender">
 <xs:restriction base="xs:string">
 <xs:enumeration value="male"/>
 <xs:enumeration value="female"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:complexType name="person">
 <xs:sequence>
 <xs:element name="first-name" type="xs:string"/>
 <xs:element name="middle-name" type="xs:string" minOccurs="0"/>
 <xs:element name="last-name" type="xs:string"/>
 <xs:element name="gender" type="gender"/>
 <xs:element name="age" type="xs:unsignedShort"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:unsignedInt" use="required"/>
 </xs:complexType>

 <xs:complexType name="people">
 <xs:sequence>
 <xs:element name="person" type="person" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

 <xs:element name="people" type="people"/>

</xs:schema>

25January 2011 Embedded C++/Hybrid Mapping Getting Started Guide

4 Working with Object Models

A sample XML instance to go along with this schema is saved in people.xml :

<?xml version="1.0"?>
<people>

 <person id="1">
 <first-name>John</first-name>
 <last-name>Doe</last-name>
 <gender>male</gender>
 <age>32</age>
 </person>

 <person id="2">
 <first-name>Jane</first-name>
 <middle-name>Mary</middle-name>
 <last-name>Doe</last-name>
 <gender>female</gender>
 <age>28</age>
 </person>

</people>

Compiling people.xsd with the XSD/e compiler results in three generated object model
classes: gender , person and people . Here is how they look with STL enabled:

// gender (fixed-length)
//
class gender
{
public:
 enum value_type
 {
 male,
 female
 };

 gender ();
 gender (value_type);
 gender (const gender&);
 gender& operator= (const gender&);

 void
 value (value_type);

 operator value_type () const;

 const char*
 string () const;

private:
 ...

January 201126 Embedded C++/Hybrid Mapping Getting Started Guide

4 Working with Object Models

};

// person (fixed-length)
//
class person
{
public:
 person ();
 person (const person&);
 person& operator= (const person&);

 // id
 //
 unsigned int
 id () const;

 unsigned int&
 id ();

 void
 id (unsigned int);

 // first-name
 //
 const std::string&
 first_name () const;

 std::string&
 first_name ();

 void
 first_name (const std::string&);

 // middle-name
 //
 bool
 middle_name_present () const;

 void
 middle_name_present (bool);

 const std::string&
 middle_name () const;

 std::string&
 middle_name ();

 void
 middle_name (const std::string&);

 // last-name

27January 2011 Embedded C++/Hybrid Mapping Getting Started Guide

4 Working with Object Models

 //
 const std::string&
 last_name () const;

 std::string&
 last_name ();

 void
 last_name (const std::string&);

 // gender
 //
 const ::gender&
 gender () const;

 ::gender&
 gender ();

 void
 gender (const ::gender&);

 // age
 //
 unsigned short
 age () const;

 unsigned short&
 age ();

 void
 age (unsigned short);

private:
 ...
};

// people (variable-length)
//
class people
{
public:
 people ();

private:
 people (const people&);
 people& operator= (const people&);

public:
 // person
 //
 typedef xml_schema::fix_sequence<person> person_sequence;

January 201128 Embedded C++/Hybrid Mapping Getting Started Guide

4 Working with Object Models

 typedef person_sequence::iterator person_iterator;
 typedef person_sequence::const_iterator person_const_iterator;

 const person_sequence&
 person () const;

 person_sequence&
 person ();

private:
 ...
};

We will examine these classes in detail in the subsequent sections.

4.1 Namespaces

XSD/e maps XML namespaces specified in the targetNamespace attribute in XML Schema
to one or more nested C++ namespaces. By default, a namespace URI is mapped to a sequence of
C++ namespace names by removing the protocol and host parts and splitting the rest into a
sequence of names with ’/’ as the name separator. For example, the
http://www.codesynthesis.com/cs/my XML namespace is mapped to the cs::my
C++ namespace.

The default mapping of namespace URIs to C++ namespaces can be altered using the
--namespace-map and --namespace-regex compiler options. For example, to map the
http://www.codesynthesis.com/my XML namespace to the cs::my C++ namespace,
we can use the following option:

--namespace-map http://www.codesynthesis.com/my=cs::my

A vocabulary without a namespace is mapped to the global scope. This also can be altered with
the above options by using an empty name for the XML namespace. For example, we could place
the generated object model classes for the people.xsd schema into the records C++ names-
pace by adding the following option:

--namespace-map =records

4.2 Memory Management

To ensure that objects are allocated and passed efficiently, the C++/Hybrid mapping divides all
object model types into fixed-length and variable-length. A type is variable-length if any of the
following is true:

29January 2011 Embedded C++/Hybrid Mapping Getting Started Guide

4.1 Namespaces

1. it is an XML Schema list type
2. it is an XML Schema union type and STL is disabled
3. it derives from a variable-length type
4. it contains an element or attribute of a variable-length type
5. it contains an element or compositor (sequence or choice) with maxOccurs greater

than one
6. it is recursive (that is, one of its elements contains a reference, directly or indirectly, to the

type itself)
7. it is polymorphic (see Section 4.10, "Polymorphic Object Models" for details)

The following build-in XML Schema types are variable-length: base64Binary , hexBinary ,
NMTOKENS, and IDREFS. Furthermore, if STL is disabled, all string-based build-in XML
Schema types are variable-length, namely: string , normalizedString , token , Name,
NMTOKEN, NCName, language , QName, ID , IDFER, and anyURI .

Otherwise, a type is fixed-length. As you might have noticed from the previous code listings, the
XSD/e compiler adds a comment before each generated object model class that states whether it
is fixed or variable-length. For example, the people type is variable-length because it contains a
sequence of person elements (maxOccurs="unbounded"). If we recompile the
people.xsd schema with the --no-stl option, the person type will also become vari-
able-length since it contains elements of the string built-in type. And when STL is disabled,
string is variable-length.

The object model uses different methods for storing and passing around fixed-length and vari-
able-length types. Instances of fixed-length types are stored and passed by value since it is cheaper
to copy than to allocate them dynamically (in the STL case, the std::string is expected to
support the referenced-counted copy-on-write optimization, which makes copying cheap).

Variable-length types are always allocated dynamically and are stored and passed as pointers.
Because copying an instance of a variable-length type can be expensive, such types make their
copy constructor and copy assignment operators unavailable.

When you set a value of an element or attribute of a variable-length type, the object model
assumes ownership of the pointed to object. Unless you are using custom allocators (see Section
3.8, "Custom Allocators"), the object model expects you to allocate such an object with operator
new and will eventually delete it with operator delete .

If you wish to make copies of variable-length objects, then you can request the generation of the
object cloning functions with the --generate-clone compiler option. When this option is
specified, each variable-length type implements the _clone() function which returns a dynami-
cally-allocated copy of the object or NULL if the allocation failed and C++ exceptions are
disabled (see Section 3.3, "C++ Exceptions").

January 201130 Embedded C++/Hybrid Mapping Getting Started Guide

4.2 Memory Management

You can also request generation of detach functions with the --generate-detach compiler
option. These functions allow you to detach a variable-length object from the object model. As an
example, let us extend our people.xsd schema with the following type:

<xs:complexType name="staff">
 <xs:sequence>
 <xs:element name="permanent" type="people"/>
 <xs:element name="contract" type="people"/>
 </xs:sequence>
</xs:complexType>

If we compile it with XSD/e and specify the --generate-clone and --gener-
ate-detach options, we will get the following C++ class:

// staff (variable-length)
//
class staff
{
public:
 staff ();

 staff*
 _clone () const;

private:
 staff (const staff&);
 staff& operator= (const staff&);

public:
 // permanent
 //
 const people&
 permanent () const;

 people&
 permanent ();

 void
 permanent (people*);

 people*
 permanent_detach ();

 // contract
 //
 const people&
 contract () const;

 people&
 contract ();

31January 2011 Embedded C++/Hybrid Mapping Getting Started Guide

4.2 Memory Management

 void
 contract (people*);

 people*
 contract_detach ();

private:
 ...
};

Notice that unlike, say, the first_name() modifier function in the person class, the
permanent() and contract() modifiers expect a pointer to the people object. The
following listing shows how we can create and populate an instance of the staff class. The use
of smart pointers to hold the results of dynamic allocations is omitted for brevity:

people* per = new people;
people* con = new people;

// Populate per and con.

staff s;
s->permanent (per) // Assumes ownership of per.
s->contract (con) // Assumes ownership of con.

4.3 Enumerations

By default, string-based types that use XML Schema restriction by enumeration are mapped to
C++ classes with semantics similar to C++ enum (you can suppress this mapping and instead get
the plain inheritance by specifying the --suppress-enum compiler option). The following
code fragment again shows the C++ class that was generated for the gender XML Schema type
presented at the beginning of this chapter:

// gender (fixed-length)
//
class gender
{
public:
 enum value_type
 {
 male,
 female
 };

 gender ();
 gender (value_type);
 gender (const gender&);
 gender& operator= (const gender&);

January 201132 Embedded C++/Hybrid Mapping Getting Started Guide

4.3 Enumerations

 void
 value (value_type);

 operator value_type () const;

 const char*
 string () const;

private:
 value_type v_;
};

The gender class defines the underlying C++ enum type (value_type) with enumerators
corresponding to the enumeration elements in XML Schema. The class also defines the
default constructor, copy constructor, constructor with the underlying enum type as its argument,
and the assignment operator. The gender class also supports the implicit conversion to the
underlying enum type and the explicit conversion to string via the string() function. Finally,
it provides the value() modifier function which allows you to set the underlying enum value
explicitly. Note also that such an enumeration class is always fixed-length since it only contains
the C++ enum value. The following example shows how we can use the gender class:

gender g = gender::male;
g = gender::female;
g.value (gender::female); // Same as above.

cerr << g.string () << endl;

if (g != gender::male)
 ...

switch (g)
{
case gender::male:
 ...
case gender::female:
 ...
}

4.4 Attributes and Elements

As we have seen before, XSD/e generates a different set of member functions for elements with
different cardinalities. The C++/Hybrid mapping divides all the possible element and attribute
cardinalities into three cardinality classes: one, optional, and sequence.

The one cardinality class covers all elements that should occur exactly once as well as the
required attributes. In our example, the first-name , last-name , gender , and age
elements as well as the id attribute belong to this cardinality class. The following code fragment

33January 2011 Embedded C++/Hybrid Mapping Getting Started Guide

4.4 Attributes and Elements

again shows the accessor and modifier functions that are generated for the first-name
element in the person class:

class person
{
 // first-name
 //
 const std::string&
 first_name () const;

 std::string&
 first_name ();

 void
 first_name (const std::string&);
};

The first two accessor functions return read-only (constant) and read-write references to the
element’s value, respectively. The modifier function sets the new value for the element. Note that
the signature of the modifier function varies depending on whether the element or attribute is of a
fixed or variable-length type, as was discussed in the previous section.

The optional cardinality class covers all elements that can occur zero or one time as well as
optional attributes. In our example, the middle-name element belongs to this cardinality class.
The following code fragment again shows the accessor and modifier functions that are generated
for this element in the person class:

class person
{
 // middle-name
 //
 bool
 middle_name_present () const;

 void
 middle_name_present (bool);

 const std::string&
 middle_name () const;

 std::string&
 middle_name ();

 void
 middle_name (const std::string&);
};

January 201134 Embedded C++/Hybrid Mapping Getting Started Guide

4.4 Attributes and Elements

Compared to the one cardinality class, optional adds functions for querying and modifying the
member’s presence status. The following example shows how we can use these functions:

person& p = ...

if (p.middle_name_present ())
{
 cout << p.middle_name () << endl;
 p.middle_name_present (false); // Reset to the "not present" state.
}

If an optional member is of a variable-length type, then the second _present() function is
omitted. This is done to help detect programming errors that result from a type becoming vari-
able-length due to schema changes. In this situation, before the type becomes variable-length,
calling the presence function with true as its argument and then accessing the member is valid.
Once the type becomes variable-length, the same sequence of calls would lead to a runtime error.
By omitting the second _present() function for variable-length types, this kind of errors can
be detected at compile time. To reset an optional member of a variable-length type you can call
the member modifier function with NULL as its argument. For example, if the middle_name
member was of a variable-length type, then the above code fragment would look like this:

person& p = ...

if (p.middle_name_present ())
{
 cout << *p.middle_name () << endl;
 p.middle_name (0); // Reset to the "not present" state.
}

There are two cases in the optional cardinality class that are handled differently. These are
optional attributes with default and fixed values. When an optional attribute declaration in XML
Schema specifies a default or fixed value and such an attribute is not present in the XML docu-
ment, the attribute is assumed to have the default or fixed value, respectively. Furthermore, if an
attribute with the fixed value is set in the XML document, then the attribute value should be the
same as its fixed value.

For an optional attribute with a default value, the functions for querying and modifying the
attribute’s presence status are replaced with functions that allow you to determine whether the
attribute has the default value. The accessor functions can be called at any time since an optional
attribute with a default value always has some value. Also an extra static function is provided to
allow you to obtain the default value. Consider the following modification to the person type
which adds the verified attribute with the default value:

35January 2011 Embedded C++/Hybrid Mapping Getting Started Guide

4.4 Attributes and Elements

<xs:complexType name="person">
 <xs:sequence>
 <xs:element name="first-name" type="xs:string"/>
 ...
 </xs:sequence>
 <xs:attribute name="id" type="xs:unsignedInt" use="required"/>
 <xs:attribute name="verified" type="xs:boolean" default="false"/>
</xs:complexType>

The code fragment below shows the accessor and modifier functions that are generated for this
new attribute in the person class:

class person
{
 // verified
 //
 bool
 verified_default () const;

 void
 verified_default (bool);

 bool
 verified () const;

 bool&
 verified ();

 void
 verified (bool);

 static bool
 verified_default_value ();
};

When we create an object of the person class, the verified member is automatically initial-
ized to the default value. The following example shows how we can manipulate the verified
attribute value:

person p; // verified is set to the default value (false).

if (p.verified_default ())
 p.verified (true);
else
 p.verified_default (true); // Revert to the default value.

bool v = p.verified (); // Ok, can always be called.
bool vd = person::verified_default_value ();

January 201136 Embedded C++/Hybrid Mapping Getting Started Guide

4.4 Attributes and Elements

Note that modifying an attribute of a variable-length type via the reference when the attribute is
set to the default value is illegal since this will modify the default value shared by all instances.
For example:

type& x = ...

if (x.foo_default ())
{
 foo& f = x.foo (); // foo is variable-length, for example NMTOKENS
 f.push_back ("aaa"); // Illegal.
}

if (x.foo_default ())
{
 foo* f = new foo;
 f->push_back ("aaa");
 x.foo (f); // Ok.
}

Because an attribute with a fixed value can only be set to that value, only the read-only (constant)
accessor and the static function for obtaining the fixed value are provided for such attributes.
Similar to the default values, members with fixed values of a newly created object are automati-
cally initialized to their respective fixed values. Consider the following modification to the
verified attribute from the schema above:

<xs:complexType name="person">
 ...
 <xs:attribute name="verified" type="xs:boolean" fixed="true"/>
</xs:complexType>

The code fragment below shows the accessor functions that are generated for this attribute in the
person class:

class person
{
 // verified
 //
 bool
 verified () const;

 static bool
 verified_fixed_value ();
};

During serialization, attributes that are set to default and fixed values are explicitly specified in
the resulting XML document. You can use the --omit-default-attributes XSD/e
compiler option to omit such attributes from the serialized XML.

37January 2011 Embedded C++/Hybrid Mapping Getting Started Guide

4.4 Attributes and Elements

The sequence cardinality class covers all elements that can occur more than once. In our example,
the person element in the people type belongs to this cardinality class. The following code
fragment shows again the type definitions as well as the accessor and modifier functions that are
generated for this element in the people class:

class people
{
 // person
 //
 typedef xml_schema::fix_sequence<person> person_sequence;
 typedef person_sequence::iterator person_iterator;
 typedef person_sequence::const_iterator person_const_iterator;

 const person_sequence&
 person () const;

 person_sequence&
 person ();
};

The person_sequence type is a sequence container for the element’s values. It has an inter-
face similar to std::vector and we will discuss it in more detail shortly. The
person_iterator and person_const_iterator types are read-write and read-only
(constant) iterators for the person_sequence container.

Unlike other two cardinality classes, the sequence class only provides accessor functions that
return read-only (constant) and read-write references to the sequence container. The modification
of the element values is performed my manipulating the returned sequence container and
elements that it contains.

In the remainder of this section we will examine the interfaces of the sequence containers which
differ slightly depending on whether the element type is fixed or variable-length and whether
C++ exceptions are enabled. Also, when STL is disabled, string sequences have a special inter-
face which is also discussed below.

When exceptions are enabled, the fixed-length type sequences are implemented in terms of the
following class template:

namespace xml_schema
{
 template <typename T>
 class fix_sequence
 {
 public:
 typedef T value_type;
 typedef T* pointer;
 typedef const T* const_pointer;
 typedef T& reference;

January 201138 Embedded C++/Hybrid Mapping Getting Started Guide

4.4 Attributes and Elements

 typedef const T& const_reference;

 typedef size_t size_type;
 typedef ptrdiff_t difference_type;

 typedef T* iterator;
 typedef const T* const_iterator;

 public:
 fix_sequence ();

 void
 swap (fix_sequence&);

 private:
 fix_sequence (const fix_sequence&);

 fix_sequence&
 operator= (fix_sequence&);

 public:
 iterator
 begin ();

 const_iterator
 begin () const;

 iterator
 end ();

 const_iterator
 end () const;

 T&
 front ();

 const T&
 front () const;

 T&
 back ();

 const T&
 back () const;

 T&
 operator[] (size_t);

 const T&
 operator[] (size_t) const;

39January 2011 Embedded C++/Hybrid Mapping Getting Started Guide

4.4 Attributes and Elements

 public:
 bool
 empty () const;

 size_t
 size () const;

 size_t
 capacity () const;

 size_t
 max_size () const;

 public:
 void
 clear ();

 void
 pop_back ();

 iterator
 erase (iterator);

 void
 push_back (const T&);

 iterator
 insert (iterator, const T&);

 void
 reserve (size_t);

 void
 assign (const T* src, size_t n);
 };
}

When C++ exceptions are disabled, the signatures of the push_back() , insert() ,
reserve() , and assign() functions change as follows:

namespace xml_schema
{
 template <typename T>
 class fix_sequence
 {
 public:
 enum error
 {
 error_none,
 error_no_memory
 };

January 201140 Embedded C++/Hybrid Mapping Getting Started Guide

4.4 Attributes and Elements

 ...

 public:
 error
 push_back (const T&);

 error
 insert (iterator, const T&);

 error
 insert (iterator, const T&, iterator& result);

 error
 reserve (size_t);

 error
 assign (const T* src, size_t n);
 };
}

That is, the functions that may require memory allocation now return an error code that you will
need to check in order to detect the out of memory condition.

When exceptions are enabled, the variable-length type sequences are implemented in terms of the
following class template:

namespace xml_schema
{
 template <typename T>
 class var_sequence
 {
 public:
 typedef T value_type;
 typedef T* pointer;
 typedef const T* const_pointer;
 typedef T& reference;
 typedef const T& const_reference;

 typedef size_t size_type;
 typedef ptrdiff_t difference_type;

 typedef <implementation details> iterator;
 typedef <implementation details> const_iterator;

 public:
 var_sequence ();

 void
 swap (var_sequence&);

41January 2011 Embedded C++/Hybrid Mapping Getting Started Guide

4.4 Attributes and Elements

 private:
 var_sequence (const var_sequence&);

 var_sequence&
 operator= (var_sequence&);

 public:
 iterator
 begin ();

 const_iterator
 begin () const;

 iterator
 end ();

 const_iterator
 end () const;

 T&
 front ();

 const T&
 front () const;

 T&
 back ();

 const T&
 back () const;

 T&
 operator[] (size_t);

 const T&
 operator[] (size_t) const;

 public:
 bool
 empty () const;

 size_t
 size () const;

 size_t
 capacity () const;

 size_t
 max_size () const;

January 201142 Embedded C++/Hybrid Mapping Getting Started Guide

4.4 Attributes and Elements

 public:
 void
 clear ();

 void
 push_back (T*);

 iterator
 insert (iterator, T*);

 void
 pop_back ();

 iterator
 erase (iterator);

 void
 reserve (size_t);

 T*
 detach (iterator);

 void
 attach (iterator, T*);
 };
}

Most of this interface is identical to the fixed-length type version except for the push_back() ,
and insert() functions. Similar to the modifier functions for elements and attributes of vari-
able-length types, these two functions expect a pointer to the dynamically-allocated instance of
the type and assume ownership of the passed object. To simplify error handling, these two func-
tions delete the passed object if the reallocation of the underlying sequence buffer fails. The
var_sequence class template also provides the detach() and attach() functions. The
detach() function allows you to detach the contained object at the specified position. A
detached object should eventually be deallocated with operator delete . Similarly, the
attach() function allows you to attach a new object at the specified position.

When C++ exceptions are disabled, the push_back() , insert() , and reserve() func-
tions return an error code to signal the out of memory condition:

namespace xml_schema
{
 template <typename T>
 class var_sequence
 {
 public:
 enum error
 {
 error_none,

43January 2011 Embedded C++/Hybrid Mapping Getting Started Guide

4.4 Attributes and Elements

 error_no_memory
 };

 ...

 public:
 error
 push_back (T*);

 error
 insert (iterator, T*);

 error
 insert (iterator, T*, iterator& result);

 error
 reserve (size_t);
 };
}

When STL is enabled, the string_sequence class has the same interface as
fix_sequence<std::string> . When STL is disabled and strings are mapped to char* ,
string_sequence has a special interface. When C++ exceptions are enabled, it has the
following definition:

namespace xml_schema
{
 class string_sequence
 {
 public:
 typedef char* value_type;
 typedef char** pointer;
 typedef const char** const_pointer;
 typedef char* reference;
 typedef const char* const_reference;

 typedef size_t size_type;
 typedef ptrdiff_t difference_type;

 typedef char** iterator;
 typedef const char* const* const_iterator;

 string_sequence ();

 void
 swap (string_sequence&);

 private:
 string_sequence (string_sequence&);

January 201144 Embedded C++/Hybrid Mapping Getting Started Guide

4.4 Attributes and Elements

 string_sequence&
 operator= (string_sequence&);

 public:
 iterator
 begin ();

 const_iterator
 begin () const;

 iterator
 end ();

 const_iterator
 end () const;

 char*
 front ();

 const char*
 front () const;

 char*
 back ();

 const char*
 back () const;

 char*
 operator[] (size_t);

 const char*
 operator[] (size_t) const;

 public:
 bool
 empty () const;

 size_t
 size () const;

 size_t
 capacity () const;

 size_t
 max_size () const;

 public:
 void
 clear ();

45January 2011 Embedded C++/Hybrid Mapping Getting Started Guide

4.4 Attributes and Elements

 void
 pop_back ();

 iterator
 erase (iterator);

 void
 push_back (char*);

 void
 push_back_copy (const char*);

 iterator
 insert (iterator, char*);

 void
 reserve (size_t);

 char*
 detach (iterator);

 void
 attach (iterator, char*);
 };
}

The push_back() and insert() functions assume ownership of the passed string which
should be allocated with operator new[] and will be deallocated with operator delete[] by
the string_sequence object. Similar to var_sequence , these two functions free the
passed string if the reallocation of the underlying sequence buffer fails. The
push_back_copy() function makes a copy of the passed string. The string_sequence
class also provides the detach() and attach() functions. The detach() function allows
you to detach the contained string at the specified position. A detached string should eventually
be deallocated with operator delete[] . Similarly, the attach() function allows you to
attach a new string at the specified position.

When C++ exceptions are disabled, the signatures of the push_back() ,
push_back_copy() , insert() , and reserve() functions in the string_sequence
class change as follows:

namespace xml_schema
{
 class string_sequence
 {
 public:
 enum error
 {
 error_none,
 error_no_memory

January 201146 Embedded C++/Hybrid Mapping Getting Started Guide

4.4 Attributes and Elements

 };

 ...

 public:
 error
 push_back (char*);

 error
 push_back_copy (const char*);

 error
 insert (iterator, char*);

 error
 insert (iterator, char*, iterator& result);

 error
 reserve (size_t);
 };
}

4.5 Compositors

The XML Schema language provides three compositor constructs that are used to group
elements: all , sequence , and choice . If a compositor has an optional or sequence cardinal-
ity class (see Section 4.4, "Attributes and Elements") or if a compositor is inside choice , then
the C++/Hybrid mapping generates a nested class for such a compositor as well as a set of acces-
sor and modifier functions similar to the ones defined for elements and attributes. Otherwise, the
member functions, corresponding to elements defined in a compositor, are generated directly in
the containing class.

Compositor classes are either fixed or variable-length and obey the same storage and passing
rules as object model classes corresponding to XML Schema types (see Section 4.2, "Memory
Management"). Consider the following schema fragment as an example:

<complexType name="type">
 <sequence>
 <sequence minOccurs="0">
 <element name="a" type="int"/>
 <element name="b" type="string" maxOccurs="unbounded"/>
 </sequence>
 <sequence maxOccurs="unbounded">
 <element name="c" type="int"/>
 <element name="d" type="string"/>
 </sequence>
 </sequence>
</complexType>

47January 2011 Embedded C++/Hybrid Mapping Getting Started Guide

4.5 Compositors

The corresponding object model class is shown below:

// type (variable-length)
//
class type
{
public:
 type ();

private:
 type (const type&);
 type& operator= (const type&);

public:
 // sequence (variable-length)
 //
 class sequence_type
 {
 public:
 sequence_type ();

 private:
 sequence_type (const sequence_type&);
 sequence_type& operator= (const sequence_type&);

 public:
 // a
 //
 int
 a () const;

 int&
 a ();

 void
 a (int);

 // b
 //
 typedef xml_schema::string_sequence b_sequence;
 typedef b_sequence::iterator b_iterator;
 typedef b_sequence::const_iterator b_const_iterator;

 const b_sequence&
 b () const;

 b_sequence&
 b ();

 private:
 ...

January 201148 Embedded C++/Hybrid Mapping Getting Started Guide

4.5 Compositors

 };

 bool
 sequence_present () const;

 const sequence_type&
 sequence () const;

 sequence_type&
 sequence ();

 void
 sequence (sequence_type*);

 // sequence1 (fixed-length)
 //
 class sequence1_type
 {
 public:
 sequence1_type ();
 sequence1_type (const sequence1_type&);
 sequence1_type& operator= (const sequence1_type&);

 // c
 //
 int
 c () const;

 int&
 c ();

 void
 c (int);

 // d
 //
 const std::string&
 d () const;

 std::string&
 d ();

 void
 d (const std::string&);

 private:
 ...
 };

 typedef xml_schema::fix_sequence<sequence1_type> sequence1_sequence;
 typedef sequence1_sequence::iterator sequence1_iterator;

49January 2011 Embedded C++/Hybrid Mapping Getting Started Guide

4.5 Compositors

 typedef sequence1_sequence::const_iterator sequence1_const_iterator;

 const sequence1_sequence&
 sequence1 () const;

 sequence1_sequence&
 sequence1 ();

private:
 ...
};

The content of the outer sequence compositor is generated in-line since this compositor
belongs to the one cardinality class. The first nested sequence compositor is optional (minOc-
curs="0"), which results in a corresponding nested class. Notice that the sequence_type is
variable-length and the accessor and modifier functions corresponding to this sequence
compositor are the same as for an optional element or attribute. Similarly, the second nested
compositor is of the sequence cardinality class (maxOccurs="unbounded"), which also
results in a nested class and a set of accessor functions.

Generated code corresponding to an all and sequence compositor, whether in-line or as a
nested class, simply define accessor and modifier functions for the elements that this compositor
contains. For the choice compositor, on the other hand, additional types and functions are
generated to support querying and selecting the choice arm that is in effect. Consider the follow-
ing simple example:

<complexType name="type">
 <choice>
 <element name="a" type="int"/>
 <element name="b" type="string"/>
 <element name="c" type="boolean"/>
 </choice>
</complexType>

The corresponding object model class is shown next:

// type (fixed-length)
//
class type
{
public:
 type ();
 type (const type&);
 type& operator= (const type&);

 // choice
 //
 enum choice_arm_tag
 {

January 201150 Embedded C++/Hybrid Mapping Getting Started Guide

4.5 Compositors

 a_tag,
 b_tag,
 c_tag
 };

 choice_arm_tag
 choice_arm () const;

 void
 choice_arm (choice_arm_tag);

 // a
 //
 int
 a () const;

 int&
 a ();

 void
 a (int);

 // b
 //
 const std::string&
 b () const;

 std::string&
 b ();

 void
 b (const std::string&);

 // c
 //
 bool
 c () const;

 bool&
 c ();

 void
 c (bool);

private:
 ...
};

51January 2011 Embedded C++/Hybrid Mapping Getting Started Guide

4.5 Compositors

The extra type is the choice_arm_tag enumeration which defines a set of tags corresponding
to each choice arm. There are also the choice_arm() accessor and modifier functions that can
be used to query and set the current choice arm. The following code fragment shows how we can
use this class:

type& x = ...

switch (x.choice_arm ())
{
case type::a_tag:
 {
 cout << "a: " << x.a () << endl;
 break;
 }
case type::b_tag:
 {
 cout << "b: " << x.b () << endl;
 break;
 }
case type::c_tag:
 {
 cout << "c: " << x.c () << endl;
 break;
 }
}

// Modifiers automatically set the corresponding arm.
//
x.a (10);

// For accessors we need to select the arm explicitly.
//
x.choice_arm (type::b_tag);
x.b () = "b";

The following slightly more complex example triggers the generation of nested classes for the
choice compositor as well as for the sequence compositor inside choice . Notice that the
nested class for sequence is generated because it is in choice even though its cardinality
class is one.

<complexType name="type">
 <choice maxOccurs="unbounded">
 <sequence>
 <element name="a" type="int"/>
 <element name="b" type="string"/>
 </sequence>
 <element name="c" type="boolean"/>
 </choice>
</complexType>

January 201152 Embedded C++/Hybrid Mapping Getting Started Guide

4.5 Compositors

The corresponding object model class is shown next:

// type (variable-length)
//
class type
{
public:
 type ();

private:
 type (const type&);
 type& operator= (const type&);

public:
 // choice (fixed-length)
 //
 class choice_type
 {
 public:
 choice_type ();
 choice_type (const choice_type&);
 choice_type& operator= (const choice_type&);

 enum choice_arm_tag
 {
 sequence_tag,
 c_tag
 };

 choice_arm_tag
 choice_arm () const;

 void
 choice_arm (choice_arm_tag);

 // sequence (fixed-length)
 //
 class sequence_type
 {
 public:
 sequence_type ();
 sequence_type (const sequence_type&);
 sequence_type& operator= (const sequence_type&);

 // a
 //
 int
 a () const;

 int&
 a ();

53January 2011 Embedded C++/Hybrid Mapping Getting Started Guide

4.5 Compositors

 void
 a (int);

 // b
 //
 const std::string&
 b () const;

 std::string&
 b ();

 void
 b (const std::string&);

 private:
 ...
 };

 const sequence_type&
 sequence () const;

 sequence_type&
 sequence ();

 void
 sequence (const sequence_type&);

 // c
 //
 bool
 c () const;

 bool&
 c ();

 void
 c (bool);

 private:
 ...
 };

 typedef xml_schema::fix_sequence<choice_type> choice_sequence;
 typedef choice_sequence::iterator choice_iterator;
 typedef choice_sequence::const_iterator choice_const_iterator;

 const choice_sequence&
 choice () const;

 choice_sequence&

January 201154 Embedded C++/Hybrid Mapping Getting Started Guide

4.5 Compositors

 choice ();

private:
 ...
};

4.6 Accessing the Object Model

In this section we will examine how to get to the information stored in the object model for the
person records vocabulary introduced at the beginning of this chapter. The following application
accesses and prints the contents of the people.xml file:

#include <memory>
#include <iostream>

#include "people.hxx"
#include "people-pimpl.hxx"

using namespace std;

int
main ()
{
 // Parse.
 //
 people_paggr people_p;
 xml_schema::document_pimpl doc_p (people_p.root_parser (),
 people_p.root_name ());
 people_p.pre ();
 doc_p.parse ("people.xml");
 auto_ptr<people> ppl (people_p.post ());

 // Iterate over individual person records.
 //
 people::person_sequence& ps = ppl->person ();

 for (people::person_iterator i = ps.begin (); i != ps.end (); ++i)
 {
 person& p = *i;

 // Print names: first-name and last-name are required elements,
 // middle-name is optional.
 //
 cout << "name: " << p.first_name () << " ";

 if (p.middle_name_present ())
 cout << p.middle_name () << " ";

 cout << p.last_name () << endl;

55January 2011 Embedded C++/Hybrid Mapping Getting Started Guide

4.6 Accessing the Object Model

 // Print gender, age, and id which are all required.
 //
 cout << "gender: " << p.gender ().string () << endl
 << "age: " << p.age () << endl
 << "id: " << p.id () << endl
 << endl;
 }
}

This code shows common patterns of accessing elements and attributes with different cardinality
classes. For the sequence element (person in the people type) we first obtain a reference to
the container and then iterate over individual records. The values of elements and attributes with
the one cardinality class (first-name , last-name , gender , age , and id) can be obtained
directly by calling the corresponding accessor functions. For the optional middle-name
element we first check if the value is present and only then call the corresponding accessor to
retrieve it.

Note that when we want to reduce typing by creating a variable representing a fragment of the
object model that we are currently working with (ps and p above), we obtain a reference to that
fragment instead of making a copy. This is generally a good rule to follow when creating efficient
applications.

If we run the above application on our sample people.xml , the output looks as follows:

name: John Doe
gender: male
age: 32
id: 1

name: Jane Mary Doe
gender: female
age: 28
id: 2

4.7 Modifying the Object Model

In this section we will examine how to modify the information stored in the object model for our
person records vocabulary. The following application changes the contents of the people.xml
file:

#include <memory>
#include <iostream>

#include "people.hxx"
#include "people-pimpl.hxx"
#include "people-simpl.hxx"

January 201156 Embedded C++/Hybrid Mapping Getting Started Guide

4.7 Modifying the Object Model

using namespace std;

int
main ()
{
 // Parse.
 //
 people_paggr people_p;
 xml_schema::document_pimpl doc_p (people_p.root_parser (),
 people_p.root_name ());
 people_p.pre ();
 doc_p.parse ("people.xml");
 auto_ptr<people> ppl (people_p.post ());

 // Iterate over individual person records and increment
 // the age.
 //
 people::person_sequence& ps = ppl->person ();

 for (people::person_iterator i = ps.begin (); i != ps.end (); ++i)
 {
 i->age ()++; // Alternative way: i->age (i->age () + 1)
 }

 // Add middle-name to the first record and remove it from
 // the second.
 //
 person& john = ps[0];
 person& jane = ps[1];

 john.middle_name ("Mary");
 jane.middle_name_present (false);

 // Add another John record.
 //
 ps.push_back (john);

 // Serialize the modified object model to XML.
 //
 people_saggr people_s;
 xml_schema::document_simpl doc_s (people_s.root_serializer (),
 people_s.root_name ());
 people_s.pre (*ppl);
 doc_s.serialize (cout, xml_schema::document_simpl::pretty_print);
 people_s.post ();
}

The first modification the above application performs is iterating over person records and incre-
menting the age value. This code fragment shows how to modify the value of a required attribute
or element. The next modification shows how to set a new value for the optional middle-name

57January 2011 Embedded C++/Hybrid Mapping Getting Started Guide

4.7 Modifying the Object Model

element as well as clear its value. Finally, the example adds a copy of the John Doe record to the
person element sequence.

Note that in this case using references for the ps , john , and jane variables is no longer a
performance improvement but a requirement for the application to function correctly. If we
hadn’t used references, all our changes would have been made on copies without affecting the
object model.

If we run the above application on our sample people.xml , the output looks as follows:

<?xml version="1.0"?>
<people>

 <person id="1">
 <first-name>John</first-name>
 <middle-name>Mary</middle-name>
 <last-name>Doe</last-name>
 <gender>male</gender>
 <age>33</age>
 </person>

 <person id="2">
 <first-name>Jane</first-name>
 <last-name>Doe</last-name>
 <gender>female</gender>
 <age>29</age>
 </person>

 <person id="1">
 <first-name>John</first-name>
 <middle-name>Mary</middle-name>
 <last-name>Doe</last-name>
 <gender>male</gender>
 <age>33</age>
 </person>

</people>

4.8 Creating the Object Model from Scratch

In this section we will examine how to create a new object model for our person records vocabu-
lary. The following application recreates the content of the original people.xml file:

#include <iostream>

#include "people.hxx"
#include "people-simpl.hxx"

using namespace std;

January 201158 Embedded C++/Hybrid Mapping Getting Started Guide

4.8 Creating the Object Model from Scratch

int
main ()
{
 people ppl;
 people::person_sequence& ps = ppl.person ();

 // John
 //
 {
 person p;
 p.first_name ("John");
 p.last_name ("Doe");
 p.gender (gender::male);
 p.age (32);
 p.id (1);

 ps.push_back (p);
 }

 // Jane
 //
 {
 person p;
 p.first_name ("Jane");
 p.middle_name ("Mary");
 p.last_name ("Doe");
 p.gender (gender::female);
 p.age (28);
 p.id (2);

 ps.push_back (p);
 }

 // Serialize the object model to XML.
 //
 people_saggr people_s;
 xml_schema::document_simpl doc_s (people_s.root_serializer (),
 people_s.root_name ());
 people_s.pre (ppl);
 doc_s.serialize (cout, xml_schema::document_simpl::pretty_print);
 people_s.post ();
}

The only new part in the above application is the calls to the people and person constructors.
As a general rule, a newly created instance does not assign any values to its elements and
attributes. That is, members with the one cardinality class are left uninitialized, members with the
optional cardinality class are set to the "not present" state, and members with the sequence cardi-
nality class have empty containers. After the instance has been created, we can set its element and
attribute values using the modifier functions.

59January 2011 Embedded C++/Hybrid Mapping Getting Started Guide

4.8 Creating the Object Model from Scratch

The above application produces the following output:

<?xml version="1.0" ?>
<people>

 <person id="1">
 <first-name>John</first-name>
 <last-name>Doe</last-name>
 <gender>male</gender>
 <age>32</age>
 </person>

 <person id="2">
 <first-name>Jane</first-name>
 <middle-name>Mary</middle-name>
 <last-name>Doe</last-name>
 <gender>female</gender>
 <age>28</age>
 </person>

</people>

4.9 Customizing the Object Model

Sometimes it is desirable to add extra, application-specific data or functionality to some object
model classes or nested compositor classes. Cases where this may be required include handling of
typeless content matched by XML Schema wildcards as well as a need for an application to pass
extra data or provide custom functions as part of the object model. The C++/Hybrid mapping
provides two mechanisms for accomplishing this: custom data and custom types. Custom data is a
light-weight mechanism for storing application-specific data by allowing you to add a sequence
of opaque objects, stored as void* , to select generated classes. Type customization is a more
powerful mechanism that allows you to provide custom implementations for select object model
classes. You have the option of either extending the generated version of the class (for example,
by adding extra data members and/or functions) or providing your own implementation from
scratch. The latter approach essentially allows you to change the mapping of XML Schema to
C++ on a case by case basis.

It is also possible to customize the parsing and serialization code, for example, to populate the
custom data sequence or custom data members during parsing and later serialize them to XML.
See Section 6.1, "Customizing Parsers and Serializers" for details. The remainder of this section
discusses the custom data and custom types mechanisms in more detail.

To instruct the XSD/e compiler to include custom data in a specific object model class, we need
to use the --custom-data option with the corresponding XML Schema type name as its argu-
ment. To include custom data into a nested compositor class, use its qualified name starting with
the XML Schema type, for example type::sequence1 . If we would like to add the ability to

January 201160 Embedded C++/Hybrid Mapping Getting Started Guide

4.9 Customizing the Object Model

store custom data in the generated person class from our person records vocabulary, we can
compile people.xsd like this:

$ xsde cxx-hybrid --custom-data person people.xsd

The resulting person class will have the following extra set of type definitions and functions:

// person (variable-length)
//
class person
{
public:

 ...

 // Custom data.
 //
 typedef xml_schema::data_sequence custom_data_sequence;
 typedef custom_data_sequence::iterator custom_data_iterator;
 typedef custom_data_sequence::const_iterator custom_data_const_iterator;

 const custom_data_sequence&
 custom_data () const;

 custom_data_sequence&
 custom_data ();
};

Notice also that the person class is now variable-length since it contains a sequence. When C++
exceptions are enabled, the custom data sequence has the following interface:

namespace xml_schema
{
 class data_sequence
 {
 public:
 typedef void* value_type;
 typedef void** pointer;
 typedef const void** const_pointer;
 typedef void* reference;
 typedef const void* const_reference;

 typedef size_t size_type;
 typedef ptrdiff_t difference_type;

 typedef void** iterator;
 typedef const void* const* const_iterator;

 typedef void (*destroy_func) (void* data, size_t pos);
 typedef void* (*clone_func) (void* data, size_t pos);

61January 2011 Embedded C++/Hybrid Mapping Getting Started Guide

4.9 Customizing the Object Model

 public:
 data_sequence ();

 void
 destructor (destroy_func);

 void
 clone (clone_func);

 void
 swap (data_sequence&);

 private:
 data_sequence (const data_sequence&);

 data_sequence&
 operator= (data_sequence&);

 public:
 iterator
 begin ();

 const_iterator
 begin () const;

 iterator
 end ();

 const_iterator
 end () const;

 void*
 front ();

 const void*
 front () const;

 void*
 back ();

 const void*
 back () const;

 void*
 operator[] (size_t);

 const void*
 operator[] (size_t) const;

 public:

January 201162 Embedded C++/Hybrid Mapping Getting Started Guide

4.9 Customizing the Object Model

 bool
 empty () const;

 size_t
 size () const;

 size_t
 capacity () const;

 size_t
 max_size () const;

 public:
 void
 clear ();

 void
 pop_back ();

 iterator
 erase (iterator);

 void
 push_back (void*);

 iterator
 insert (iterator, void*);

 void
 reserve (size_t);
 };
}

The destructor() modifier allows you to specify the clean up function used to free the
sequence elements. Similarly, the clone() modifier allows you to specify the cloning function
used to copy the sequence elements. The second argument in these functions is the position of the
element in the sequence. This allows you to store objects of different types in the same custom
data sequence.

The push_back() and insert() functions free the passed object if the reallocation of the
underlying sequence buffer fails. When exceptions are disabled, the push_back() ,
insert() , and reserve() functions return an error code to signal the out of memory condi-
tion:

namespace xml_schema
{
 class data_sequence
 {
 public:

63January 2011 Embedded C++/Hybrid Mapping Getting Started Guide

4.9 Customizing the Object Model

 enum error
 {
 error_none,
 error_no_memory
 };

 ...

 public:
 error
 push_back (void*);

 error
 insert (iterator, void*);

 error
 insert (iterator, void*, iterator& result);

 error
 reserve (size_t);
 };
}

The following code fragment shows how we can store and retrieve custom data in the person
class:

class data
{
 ...
};

void
destroy_data (void* p, size_t)
{
 delete static_cast<data*> (p);
}

person& = ...;
person::custom_data_sequence& cd = p.custom_data ();

cd.destructor (&destroy_data);

// Store.
//
data* d = new data;
cd.push_back (d);

// Retrieve.
//

January 201164 Embedded C++/Hybrid Mapping Getting Started Guide

4.9 Customizing the Object Model

for (person::custom_data_iterator i = cd.begin (); i != cd.end (); ++i)
{
 data* d = static_cast<data*> (*i);
}

To instruct the XSD/e compiler to use a custom implementation for a specific object model class,
we need to use the --custom-type option. The argument format for this option is
name[=[flags][/[type][/[base][/include]]]] . The name component is the
XML Schema type name being customized. Optional flags allow you to specify whether the
custom class is fixed or variable-length since customization can alter this property, normally from
fixed-length to variable-length. The f flag indicates the type is fixed-length and the v flag indi-
cates the type is variable-length. If omitted, the default rules are used to determine the type length
(see Section 4.2, "Memory Management"). Optional type is a C++ type name, potentially quali-
fied, that should be used as a custom implementation. If specified, the object model type is
defined as a typedef alias for this C++ type. Optional base is a C++ name that should be
given to the generated version. It is normally used as a base for the custom implementation.
Optional include is the header file that defines the custom implementation. It is #include ’ed
into the generated code immediately after (if base is specified) or instead of the generated
version. The following examples show how we can use this option:

--custom-type foo
--custom-type foo=///foo.hxx
--custom-type foo=v///foo.hxx
--custom-type foo=f/int
--custom-type foo=//foo_base/my/foo.hxx
--custom-type foo=v/wrapper<foo_base>/foo_base

The first version instructs the XSD/e compiler not to generate the object model class for the foo
XML Schema type. The generated code simply forward-declares foo as a class and leaves it to
you to provide the implementation. The second version is similar to the first, except now we
specify the header file which defines the custom implementation. This file is automatically
included into the generated header file instead of the standard implementation. The third version
is similar to the second, except now we specify that the foo type is variable-length. In the previ-
ous two cases the type length was determined automatically based on the type definition in the
schema. In the fourth version we specify that schema type foo is fixed-length and should be
mapped to int . The fifth version instructs the XSD/e compiler to generate the object model class
for type foo but call it foo_base . It also tells the compiler to generate the #include direc-
tive with the my/foo.hxx file (which presumably defines foo) right after the foo_base
class. Finally, the last version specifies that schema type foo is variable-length and should be
mapped to wrapper<foo_base> . The compiler is also instructed to generate the standard
object model class for type foo but call it foo_base . If you omit the last component
(include), as in the final version, then you can provide the custom type definitions using one of
the prologue or epilogue XSD/e compiler options. See the XSD/e Compiler Command Line
Manual for details.

65January 2011 Embedded C++/Hybrid Mapping Getting Started Guide

4.9 Customizing the Object Model

http://www.codesynthesis.com/projects/xsde/documentation/xsde.xhtml
http://www.codesynthesis.com/projects/xsde/documentation/xsde.xhtml

Note also that if the type length you specified with the --custom-type option differs from the
default type length that would have been determined by the XSD/e compiler, then you need to
specify this --custom-type option when compiling every schema file that includes or imports
the schema that defines the type being customized.

As an example, let us add a flag to the person class from our person records vocabulary. This
flag can be used by the application to keep track of whether a particular person record has been
verified. To customize the person type we can compile people.xsd like this:

$ xsde cxx-hybrid --custom-type person=//person_base/person.hxx \
people.xsd

The relevant code fragment from the generated header file looks like this:

// person_base (fixed-length)
//
class person_base
{
 ...
};

#include "person.hxx"

// people (variable-length)
//
class people
{
 ...

 // person
 //
 typedef xml_schema::fix_sequence<person> person_sequence;
 typedef person_sequence::iterator person_iterator;
 typedef person_sequence::const_iterator person_const_iterator;

 const person_sequence&
 person () const;

 person_sequence&
 person ();

private:
 ...
};

We base our custom implementation of the person class on generated person_base and save
it to person.hxx :

January 201166 Embedded C++/Hybrid Mapping Getting Started Guide

4.9 Customizing the Object Model

class person: public person_base
{
public:
 person ()
 : verified_ (false)
 {
 }

 bool
 verified () const
 {
 return verified_;
 }

 void
 verified (bool v)
 {
 verified_ = v;
 }

private:
 bool verified_;
};

The client code can use our custom implementation as if the flag was part of the vocabulary:

people::person_sequence& ps = ...;

for (people::person_iterator i = ps.begin (); i != ps.end (); ++i)
{
 if (!i->verified ())
 {
 // Verify the record.

 ...

 i->verified (true);
 }
}

4.10 Polymorphic Object Models

When generating polymorphism-aware code (see Section 3.7, "Support for Polymorphism"),
some objects in the resulting object model will be polymorphic. By polymorphic we mean that
the object’s (static) type as specified in the object model’s interface may differ from the object’s
actual (dynamic) type. Because of this, it may be necessary to discover the object’s actual type at
runtime and cast it to this type to gain access to the object’s extended interface. Consider the
following schema as an example:

67January 2011 Embedded C++/Hybrid Mapping Getting Started Guide

4.10 Polymorphic Object Models

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:complexType name="person">
 <xs:sequence>
 <xs:element name="name" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>

 <!-- substitution group root -->
 <xs:element name="person" type="person"/>

 <xs:complexType name="superman">
 <xs:complexContent>
 <xs:extension base="person">
 <xs:attribute name="can-fly" type="xs:boolean"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <xs:element name="superman"
 type="superman"
 substitutionGroup="person"/>

 <xs:complexType name="batman">
 <xs:complexContent>
 <xs:extension base="superman">
 <xs:attribute name="wing-span" type="xs:unsignedInt"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <xs:element name="batman"
 type="batman"
 substitutionGroup="superman"/>

 <xs:complexType name="supermen">
 <xs:sequence>
 <xs:element ref="person" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

 <xs:element name="supermen" type="supermen"/>

</xs:schema>

Conforming XML documents can use the superman and batman types in place of the
person type either by specifying the type with the xsi:type attributes or by using the
elements from the substitution group, for instance:

January 201168 Embedded C++/Hybrid Mapping Getting Started Guide

4.10 Polymorphic Object Models

<supermen xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <person>
 <name>John Doe</name>
 </person>

 <superman can-fly="false">
 <name>James "007" Bond</name>
 </superman>

 <superman can-fly="true" wing-span="10" xsi:type="batman">
 <name>Bruce Wayne</name>
 </superman>

</supermen>

When compiling the schema above with the --generate-polymorphic option, the XSD/e
compiler automatically detects that the type hierarchy starting with the person type is polymor-
phic. A polymorphic type is always variable-length which means objects of polymorphic types
are allocated dynamically and are stored and passed around as pointers or references. A polymor-
phic type also defines a virtual _clone() function (see Section 4.2, "Memory Management")
and a virtual destructor which allow you to copy and delete an instance of a polymorphic type via
a pointer to its base. The following code fragment shows how we can parse, access, modify, and
serialize the above XML document:

// Parse.
//
supermen_paggr supermen_p;

// The last argument to the document’s constructor indicates that we
// are parsing polymorphic XML documents.
//
xml_schema::document_pimpl doc_p (
 supermen_p.root_parser (),
 supermen_p.root_name (),
 true);

supermen_p.pre ();
doc_p.parse ("supermen.xml");
auto_ptr<supermen> sm (supermen_p.post ());

// Print what we’ve got.
//
for (supermen::person_iterator i = sm->person ().begin ();
 i != sm->person ().end ();
 ++i)
{
 person& p = *i;

 if (batman* b = dynamic_cast<batman*> (&p))

69January 2011 Embedded C++/Hybrid Mapping Getting Started Guide

4.10 Polymorphic Object Models

 {
 cerr << b->name () << ", batman, wing span " <<
 b->wing_span () << endl;
 }
 else if (superman* s = dynamic_cast<superman*> (&p))
 {
 cerr << s->name () << ", ";

 if (s->can_fly ())
 cerr << "flying ";

 cerr << "superman" << endl;
 }
 else
 {
 cerr << p.name () << ", ordinary person" << endl;
 }
}

// Add another superman entry.
//
auto_ptr<superman> s (new superman);
s->name ("Clark Kent");
s->can_fly (true);
sm->person ().push_back (s.release ());

// Serialize.
//
supermen_saggr supermen_s;

// The last argument to the document’s constructor indicates that we
// are serializing polymorphic XML documents.
//
xml_schema::document_simpl doc_s (
 supermen_s.root_serializer (),
 supermen_s.root_name (),
 true);

doc_s.add_no_namespace_schema ("supermen.xsd");

supermen_s.pre (*sm);
doc_s.serialize (cout, xml_schema::document_simpl::pretty_print);
supermen_s.post ();

In the example above we used the standard C++ RTTI mechanism to detect the object’s actual
(dynamic) type. If RTTI is not available on your platform, then you can request the generation of
custom runtime type information for polymorphic types with the --generate-typeinfo
XSD/e compiler option. When this option is specified, each polymorphic type provides the
following two public functions:

January 201170 Embedded C++/Hybrid Mapping Getting Started Guide

4.10 Polymorphic Object Models

virtual const std::string&
_dynamic_type () const;

static const std::string&
_static_type ();

Or, if STL is disabled (Section 3.1, "Standard Template Library"), the following two functions:

virtual const char*
_dynamic_type () const;

static const char*
_static_type ();

The _dynamic_type() function returns the object’s dynamic type id. The
_static_type() function returns the type’s static id that can be compared to the dynamic id.
The following code fragment shows how we can change the previous example to use custom type
information instead of C++ RTTI:

for (supermen::person_iterator i = sm->person ().begin ();
 i != sm->person ().end ();
 ++i)
{
 person& p = *i;
 const string& dt = p._dynamic_type ();

 if (dt == batman::_static_type ())
 {
 batman& b = static_cast<batman&> (p)
 cerr << b.name () << ", batman, wing span " <<
 b.wing_span () << endl;
 }
 else if (dt == superman::_static_type ())
 {
 superman& s = static_cast<superman&> (p)
 cerr << s.name () << ", ";

 if (s.can_fly ())
 cerr << "flying ";

 cerr << "superman" << endl;
 }
 else
 {
 cerr << p.name () << ", ordinary person" << endl;
 }
}

71January 2011 Embedded C++/Hybrid Mapping Getting Started Guide

4.10 Polymorphic Object Models

Most of the code presented in this section is taken from the polymorphism example which can
be found in the examples/cxx/hybrid/ directory of the XSD/e distribution. Handling of
xsi:type and substitution groups when used on root elements requires a number of special
actions as shown in the polyroot example.

5 Mapping for Built-In XML Schema Types
In XML Schema, built-in types, such as int , string , etc., are defined in the XML Schema
namespace. By default this namespace is mapped to C++ namespace xml_schema (this
mapping can be altered with the --namespace-map option). The following table summarizes
the mapping of XML Schema built-in types to C++ types in the C++/Hybrid mapping. Declara-
tions for these types are automatically included into each generated header file.

XML Schema type
Alias in the xml_schema

namespace
C++ type

fixed-length integral types

byte byte signed char

unsignedByte unsigned_byte unsigned char

short short_ short

unsignedShort unsigned_short unsigned short

int int_ int

unsignedInt unsigned_int unsigned int

long long_
long or
long long
Section 3.5, "64-bit Integer Type"

unsignedLong unsigned_long
unsigned long or
unsigned long long
Section 3.5, "64-bit Integer Type"

arbitrary-length integral types

integer integer long

nonPositiveInteger non_positive_integer long

nonNegativeInteger non_negative_integer unsigned long

positiveInteger positive_integer unsigned long

January 201172 Embedded C++/Hybrid Mapping Getting Started Guide

5 Mapping for Built-In XML Schema Types

negativeInteger negative_integer long

boolean types

boolean boolean bool

fixed-precision floating-point types

float float_ float

double double_ double

arbitrary-precision floating-point types

decimal decimal double

string types

string string
std::string or char*
Section 3.1, "Standard Template
Library"

normalizedString normalized_string
std::string or char*
Section 3.1, "Standard Template
Library"

token token
std::string or char*
Section 3.1, "Standard Template
Library"

Name name
std::string or char*
Section 3.1, "Standard Template
Library"

NMTOKEN nmtoken
std::string or char*
Section 3.1, "Standard Template
Library"

NMTOKENS nmtokens
Section 5.2, "Mapping for
NMTOKENS and IDREFS"

NCName ncname
std::string or char*
Section 3.1, "Standard Template
Library"

language language
std::string or char*
Section 3.1, "Standard Template
Library"

73January 2011 Embedded C++/Hybrid Mapping Getting Started Guide

5 Mapping for Built-In XML Schema Types

qualified name

QName qname
Section 5.1, "Mapping for
QName"

ID/IDREF types

ID id
std::string or char*
Section 3.1, "Standard Template
Library"

IDREF idref
std::string or char*
Section 3.1, "Standard Template
Library"

IDREFS idrefs
Section 5.2, "Mapping for
NMTOKENS and IDREFS"

URI types

anyURI uri
std::string or char*
Section 3.1, "Standard Template
Library"

binary types

base64Binary base64_binary
Section 5.3, "Mapping for
base64Binary and hexBi-
nary "

hexBinary hex_binary
Section 5.3, "Mapping for
base64Binary and hexBi-
nary "

date/time types

date date Section 5.5, "Mapping for date "

dateTime date_time
Section 5.6, "Mapping for
dateTime "

duration duration
Section 5.7, "Mapping for
duration "

gDay gday Section 5.8, "Mapping for gDay"

gMonth gmonth
Section 5.9, "Mapping for
gMonth "

January 201174 Embedded C++/Hybrid Mapping Getting Started Guide

5 Mapping for Built-In XML Schema Types

gMonthDay gmonth_day
Section 5.10, "Mapping for
gMonthDay "

gYear gyear
Section 5.11, "Mapping for
gYear "

gYearMonth gyear_month
Section 5.12, "Mapping for
gYearMonth "

time time
Section 5.13, "Mapping for
time "

anyType and anySimpleType

anyType any_type
Section 5.14, "Mapping for
anyType "

anySimpleType any_simple_type
std::string or char*
Section 3.1, "Standard Template
Library"

As you can see from the table above a number of built-in XML Schema types are mapped to
fundamental C++ types such as int or bool . All string-based XML Schema types are mapped
to either std::string or char* , depending on whether the use of STL is enabled or not. A
number of built-in types, such as QName, the binary types, and the date/time types, do not have
suitable fundamental or standard C++ types to map to. These types are implemented from scratch
in the XSD/e runtime and are discussed in more detail in the subsequent sections.

In cases where the schema calls for an inheritance from a built-in type which is mapped to a
fundamental C++ type, a special base type corresponding to the fundamental type and defined in
the xml_schema namespace is used (C++ does not allow inheritance from fundamental types).
For example:

<complexType name="measure">
 <simpleContent>
 <extension base="int">
 <attribute name="unit" type="string" use="required"/>
 </extension>
 </simpleContent>
</complexType>

The corresponding object model class is shown below:

// measure (fixed-length)
//
class measure: public xml_schema::int_base
{

75January 2011 Embedded C++/Hybrid Mapping Getting Started Guide

5 Mapping for Built-In XML Schema Types

public:
 measure ();
 measure (const measure&);
 measure& operator= (const measure&);

 // unit
 //
 const std::string&
 unit () const;

 std::string&
 unit ();

 void
 unit (const std::string&);

private:
 ...
};

The xml_schema::int_base class has the following interface:

namespace xml_schema
{
 class int_base
 {
 public:
 int_base ();

 int_base&
 operator= (int);

 public:
 int
 base_value () const;

 int&
 base_value ();

 void
 base_value (int);

 operator const int& () const;
 operator int& ();
 };
}

All other base types for fundamental C++ types have similar interfaces. The only exception is the
base type for string types when STL is disabled:

January 201176 Embedded C++/Hybrid Mapping Getting Started Guide

5 Mapping for Built-In XML Schema Types

namespace xml_schema
{
 class string_base
 {
 public:
 string_base ();

 string_base&
 operator= (char* x)

 public:
 const char*
 base_value () const;

 char*
 base_value ();

 void
 base_value (char* x);

 char*
 base_value_detach ();

 operator const char* () const;
 operator char* ();
 };
}

Note that the string_base object assumes ownership of the strings passed to the assignment
operator and the base_value() modifier. If you detach the string value then it should eventu-
ally be deallocated with operator delete[] .

5.1 Mapping for QName

The QName built-in XML Schema type is mapped to the qname class which represents an XML
qualified name. With STL enabled (Section 3.1, "Standard Template Library"), it has the follow-
ing interface:

namespace xml_schema
{
 class qname
 {
 public:
 // The default constructor creates an uninitialized object.
 // Use modifiers to initialize it.
 //
 qname ();

 explicit

77January 2011 Embedded C++/Hybrid Mapping Getting Started Guide

5.1 Mapping for QName

 qname (const std::string& name);
 qname (const std::string& prefix, const std::string& name);

 void
 swap (qname&);

 const std::string&
 prefix () const;

 std::string&
 prefix ();

 void
 prefix (const std::string&);

 const std::string&
 name () const;

 std::string&
 name ();

 void
 name (const std::string&);
 };

 bool
 operator== (const qname&, const qname&);

 bool
 operator!= (const qname&, const qname&);
}

When STL is disabled and C++ exceptions are enabled (Section 3.3, "C++ Exceptions"), the
qname type has the following interface:

namespace xml_schema
{
 class qname
 {
 public:
 // The default constructor creates an uninitialized object.
 // Use modifiers to initialize it.
 //
 qname ();

 explicit
 qname (char* name);
 qname (char* prefix, char* name);

 void
 swap (qname&);

January 201178 Embedded C++/Hybrid Mapping Getting Started Guide

5.1 Mapping for QName

 private:
 qname (const qname&);

 qname&
 operator= (const qname&);

 public:
 char*
 prefix ();

 const char*
 prefix () const;

 void
 prefix (char*);

 void
 prefix_copy (const char*);

 char*
 prefix_detach ();

 public:
 char*
 name ();

 const char*
 name () const;

 void
 name (char*);

 void
 name_copy (const char*);

 char*
 name_detach ();
 };

 bool
 operator== (const qname&, const qname&);

 bool
 operator!= (const qname&, const qname&);
}

The modifier functions and constructors that have the char* argument assume ownership of the
passed strings which should be allocated with operator new char[] and will be deallocated
with operator delete[] by the qname object. If you detach the underlying prefix or name

79January 2011 Embedded C++/Hybrid Mapping Getting Started Guide

5.1 Mapping for QName

strings, then they should eventually be deallocated with operator delete[] .

Finally, if both STL and C++ exceptions are disabled, the qname type has the following inter-
face:

namespace xml_schema
{
 class qname
 {
 public:
 enum error
 {
 error_none,
 error_no_memory
 };

 // The default constructor creates an uninitialized object.
 // Use modifiers to initialize it.
 //
 qname ();

 explicit
 qname (char* name);
 qname (char* prefix, char* name);

 void
 swap (qname&);

 private:
 qname (const qname&);

 qname&
 operator= (const qname&);

 public:
 char*
 prefix ();

 const char*
 prefix () const;

 void
 prefix (char*);

 error
 prefix_copy (const char*);

 char*
 prefix_detach ();

 public:

January 201180 Embedded C++/Hybrid Mapping Getting Started Guide

5.1 Mapping for QName

 char*
 name ();

 const char*
 name () const;

 void
 name (char*);

 error
 name_copy (const char*);

 char*
 name_detach ();
 };

 bool
 operator== (const qname&, const qname&);

 bool
 operator!= (const qname&, const qname&);
}

5.2 Mapping for NMTOKENS and IDREFS

The NMTOKENS and IDREFS built-in XML Schema types are mapped to the string sequence
type which is discussed in Section 4.4, "Attributes and Elements".

5.3 Mapping for base64Binary and hexBinary

The base64Binary and hexBinary built-in XML Schema types are mapped to the buffer
class. With C++ exceptions enabled (Section 3.3, "C++ Exceptions"), it has the following inter-
face:

namespace xml_schema
{
 class buffer
 {
 public:
 class bounds {}; // Out of bounds exception.

 public:
 buffer ();

 explicit
 buffer (size_t size);
 buffer (size_t size, size_t capacity);
 buffer (const void* data, size_t size);
 buffer (const void* data, size_t size, size_t capacity);

81January 2011 Embedded C++/Hybrid Mapping Getting Started Guide

5.2 Mapping for NMTOKENS and IDREFS

 enum ownership_value { assume_ownership };

 // This constructor assumes ownership of the memory passed.
 //
 buffer (void* data, size_t size, size_t capacity, ownership_value);

 private:
 buffer (const buffer&);

 buffer&
 operator= (const buffer&);

 public:
 void
 assign (void* data, size_t size);

 void
 attach (void* data, size_t size, size_t capacity);

 void*
 detach ();

 void
 swap (buffer&);

 public:
 size_t
 capacity () const;

 bool
 capacity (size_t);

 public:
 size_t
 size () const;

 bool
 size (size_t);

 public:
 const char*
 data () const;

 char*
 data ();

 const char*
 begin () const;

January 201182 Embedded C++/Hybrid Mapping Getting Started Guide

5.3 Mapping for base64Binary and hexBinary

 char*
 begin ();

 const char*
 end () const;

 char*
 end ();
 };

 bool
 operator== (const buffer&, const buffer&);

 bool
 operator!= (const buffer&, const buffer&);
}

The last constructor and the attach() member function make the buffer instance assume the
ownership of the memory block pointed to by the data argument and eventually release it by
calling operator delete() . The detach() member function detaches and returns the
underlying memory block which should eventually be released by calling operator
delete() .

The capacity() and size() modifier functions return true if the underlying buffer has
moved. The bounds exception is thrown if the constructor or attach() member function
arguments violate the (size <= capacity) constraint.

If C++ exceptions are disabled, the buffer class has the following interface:

namespace xml_schema
{
 class buffer
 {
 public:
 enum error
 {
 error_none,
 error_bounds,
 error_no_memory
 };

 buffer ();

 private:
 buffer (const buffer&);

 buffer&
 operator= (const buffer&);

83January 2011 Embedded C++/Hybrid Mapping Getting Started Guide

5.3 Mapping for base64Binary and hexBinary

 public:
 error
 assign (void* data, size_t size);

 error
 attach (void* data, size_t size, size_t capacity);

 void*
 detach ();

 void
 swap (buffer&);

 public:
 size_t
 capacity () const;

 error
 capacity (size_t);

 error
 capacity (size_t, bool& moved);

 public:
 size_t
 size () const;

 error
 size (size_t);

 error
 size (size_t, bool& moved);

 public:
 const char*
 data () const;

 char*
 data ();

 const char*
 begin () const;

 char*
 begin ();

 const char*
 end () const;

 char*
 end ();

January 201184 Embedded C++/Hybrid Mapping Getting Started Guide

5.3 Mapping for base64Binary and hexBinary

 };

 bool
 operator== (const buffer&, const buffer&);

 bool
 operator!= (const buffer&, const buffer&);
}

5.4 Time Zone Representation

The date , dateTime , gDay, gMonth , gMonthDay , gYear , gYearMonth , and time
XML Schema built-in types all include an optional time zone component. The following
time_zone base class is used to represent this information:

namespace xml_schema
{
 class time_zone
 {
 public:
 time_zone ();
 time_zone (short hours, short minutes);

 bool
 zone_present () const;

 void
 zone_reset ();

 short
 zone_hours () const;

 void
 zone_hours (short);

 short
 zone_minutes () const;

 void
 zone_minutes (short);
 };

 bool
 operator== (const time_zone&, const time_zone&);

 bool
 operator!= (const time_zone&, const time_zone&);
}

85January 2011 Embedded C++/Hybrid Mapping Getting Started Guide

5.4 Time Zone Representation

The zone_present() accessor function returns true if the time zone is specified. The
zone_reset() modifier function resets the time zone object to the "not specified" state. If the
time zone offset is negative then both hours and minutes components should be negative.

5.5 Mapping for date

The date built-in XML Schema type is mapped to the date class which represents a year, a
day, and a month with an optional time zone. Its interface is presented below. For more informa-
tion on the base xml_schema::time_zone class refer to Section 5.4, "Time Zone Represen-
tation".

namespace xml_schema
{
 class date: public time_zone
 {
 public:
 // The default constructor creates an uninitialized object.
 // Use modifiers to initialize it.
 //
 date ();

 date (int year, unsigned short month, unsigned short day);

 date (int year, unsigned short month, unsigned short day,
 short zone_hours, short zone_minutes);

 int
 year () const;

 void
 year (int);

 unsigned short
 month () const;

 void
 month (unsigned short);

 unsigned short
 day () const;

 void
 day (unsigned short);
 };

 bool
 operator== (const date&, const date&);

January 201186 Embedded C++/Hybrid Mapping Getting Started Guide

5.5 Mapping for date

 bool
 operator!= (const date&, const date&);
}

5.6 Mapping for dateTime

The dateTime built-in XML Schema type is mapped to the date_time class which repre-
sents a year, a month, a day, hours, minutes, and seconds with an optional time zone. Its interface
is presented below. For more information on the base xml_schema::time_zone class refer
to Section 5.4, "Time Zone Representation".

namespace xml_schema
{
 class date_time: public time_zone
 {
 public:
 // The default constructor creates an uninitialized object.
 // Use modifiers to initialize it.
 //
 date_time ();

 date_time (int year, unsigned short month, unsigned short day,
 unsigned short hours, unsigned short minutes,
 double seconds);

 date_time (int year, unsigned short month, unsigned short day,
 unsigned short hours, unsigned short minutes,
 double seconds, short zone_hours, short zone_minutes);

 int
 year () const;

 void
 year (int);

 unsigned short
 month () const;

 void
 month (unsigned short);

 unsigned short
 day () const;

 void
 day (unsigned short);

 unsigned short
 hours () const;

87January 2011 Embedded C++/Hybrid Mapping Getting Started Guide

5.6 Mapping for dateTime

 void
 hours (unsigned short);

 unsigned short
 minutes () const;

 void
 minutes (unsigned short);

 double
 seconds () const;

 void
 seconds (double);
 };

 bool
 operator== (const date_time&, const date_time&);

 bool
 operator!= (const date_time&, const date_time&);
}

5.7 Mapping for duration

The duration built-in XML Schema type is mapped to the duration class which represents
a potentially negative duration in the form of years, months, days, hours, minutes, and seconds.
Its interface is presented below.

namespace xml_schema
{
 class duration
 {
 public:
 // The default constructor creates an uninitialized object.
 // Use modifiers to initialize it.
 //
 duration ();

 duration (bool negative,
 unsigned int years, unsigned int months, unsigned int days,
 unsigned int hours, unsigned int minutes, double seconds);

 bool
 negative () const;

 void
 negative (bool);

January 201188 Embedded C++/Hybrid Mapping Getting Started Guide

5.7 Mapping for duration

 unsigned int
 years () const;

 void
 years (unsigned int);

 unsigned int
 months () const;

 void
 months (unsigned int);

 unsigned int
 days () const;

 void
 days (unsigned int);

 unsigned int
 hours () const;

 void
 hours (unsigned int);

 unsigned int
 minutes () const;

 void
 minutes (unsigned int);

 double
 seconds () const;

 void
 seconds (double);
 };

 bool
 operator== (const duration&, const duration&);

 bool
 operator!= (const duration&, const duration&);
}

5.8 Mapping for gDay

The gDay built-in XML Schema type is mapped to the gday class which represents a day of the
month with an optional time zone. Its interface is presented below. For more information on the
base xml_schema::time_zone class refer to Section 5.4, "Time Zone Representation".

89January 2011 Embedded C++/Hybrid Mapping Getting Started Guide

5.8 Mapping for gDay

namespace xml_schema
{
 class gday: public time_zone
 {
 public:
 // The default constructor creates an uninitialized object.
 // Use modifiers to initialize it.
 //
 gday ();

 explicit
 gday (unsigned short day);

 gday (unsigned short day, short zone_hours, short zone_minutes);

 unsigned short
 day () const;

 void
 day (unsigned short);
 };

 bool
 operator== (const gday&, const gday&);

 bool
 operator!= (const gday&, const gday&);
}

5.9 Mapping for gMonth

The gMonth built-in XML Schema type is mapped to the gmonth class which represents a
month of the year with an optional time zone. Its interface is presented below. For more informa-
tion on the base xml_schema::time_zone class refer to Section 5.4, "Time Zone Represen-
tation".

namespace xml_schema
{
 class gmonth: public time_zone
 {
 public:
 // The default constructor creates an uninitialized object.
 // Use modifiers to initialize it.
 //
 gmonth ();

 explicit
 gmonth (unsigned short month);

 gmonth (unsigned short month,

January 201190 Embedded C++/Hybrid Mapping Getting Started Guide

5.9 Mapping for gMonth

 short zone_hours, short zone_minutes);

 unsigned short
 month () const;

 void
 month (unsigned short);
 };

 bool
 operator== (const gmonth&, const gmonth&);

 bool
 operator!= (const gmonth&, const gmonth&);
}

5.10 Mapping for gMonthDay

The gMonthDay built-in XML Schema type is mapped to the gmonth_day class which repre-
sents a day and a month of the year with an optional time zone. Its interface is presented below.
For more information on the base xml_schema::time_zone class refer to Section 5.4,
"Time Zone Representation".

namespace xml_schema
{
 class gmonth_day: public time_zone
 {
 public:
 // The default constructor creates an uninitialized object.
 // Use modifiers to initialize it.
 //
 gmonth_day ();

 gmonth_day (unsigned short month, unsigned short day);

 gmonth_day (unsigned short month, unsigned short day,
 short zone_hours, short zone_minutes);

 unsigned short
 month () const;

 void
 month (unsigned short);

 unsigned short
 day () const;

 void
 day (unsigned short);
 };

91January 2011 Embedded C++/Hybrid Mapping Getting Started Guide

5.10 Mapping for gMonthDay

 bool
 operator== (const gmonth_day&, const gmonth_day&);

 bool
 operator!= (const gmonth_day&, const gmonth_day&);
}

5.11 Mapping for gYear

The gYear built-in XML Schema type is mapped to the gyear class which represents a year
with an optional time zone. Its interface is presented below. For more information on the base
xml_schema::time_zone class refer to Section 5.4, "Time Zone Representation".

namespace xml_schema
{
 class gyear: public time_zone
 {
 public:
 // The default constructor creates an uninitialized object.
 // Use modifiers to initialize it.
 //
 gyear ();

 explicit
 gyear (int year);

 gyear (int year, short zone_hours, short zone_minutes);

 int
 year () const;

 void
 year (int);
 };

 bool
 operator== (const gyear&, const gyear&);

 bool
 operator!= (const gyear&, const gyear&);
}

5.12 Mapping for gYearMonth

The gYearMonth built-in XML Schema type is mapped to the gyear_month class which
represents a year and a month with an optional time zone. Its interface is presented below. For
more information on the base xml_schema::time_zone class refer to Section 5.4, "Time

January 201192 Embedded C++/Hybrid Mapping Getting Started Guide

5.11 Mapping for gYear

Zone Representation".

namespace xml_schema
{
 class gyear_month: public time_zone
 {
 public:
 // The default constructor creates an uninitialized object.
 // Use modifiers to initialize it.
 //
 gyear_month ();

 gyear_month (int year, unsigned short month);

 gyear_month (int year, unsigned short month,
 short zone_hours, short zone_minutes);

 int
 year () const;

 void
 year (int);

 unsigned short
 month () const;

 void
 month (unsigned short);
 };

 bool
 operator== (const gyear_month&, const gyear_month&);

 bool
 operator!= (const gyear_month&, const gyear_month&);
}

5.13 Mapping for time

The time built-in XML Schema type is mapped to the time class which represents hours,
minutes, and seconds with an optional time zone. Its interface is presented below. For more infor-
mation on the base xml_schema::time_zone class refer to Section 5.4, "Time Zone Repre-
sentation".

namespace xml_schema
{
 class time: public time_zone
 {
 public:

93January 2011 Embedded C++/Hybrid Mapping Getting Started Guide

5.13 Mapping for time

 // The default constructor creates an uninitialized object.
 // Use modifiers to initialize it.
 //
 time ();

 time (unsigned short hours, unsigned short minutes, double seconds);

 time (unsigned short hours, unsigned short minutes, double seconds,
 short zone_hours, short zone_minutes);

 unsigned short
 hours () const;

 void
 hours (unsigned short);

 unsigned short
 minutes () const;

 void
 minutes (unsigned short);

 double
 seconds () const;

 void
 seconds (double);
 };

 bool
 operator== (const time&, const time&);

 bool
 operator!= (const time&, const time&);
}

5.14 Mapping for anyType

The anyType built-in XML Schema type is mapped to the any_type class in the
xml_schema namespace. With C++ exceptions enabled (Section 3.3, "C++ Exceptions"), it has
the following interface:

namespace xml_schema
{
 class any_type
 {
 public:
 // Custom data.
 //
 typedef xml_schema::data_sequence custom_data_sequence;

January 201194 Embedded C++/Hybrid Mapping Getting Started Guide

5.14 Mapping for anyType

 typedef custom_data_sequence::iterator custom_data_iterator;
 typedef custom_data_sequence::const_iterator custom_data_const_iterator;

 void
 allocate_custom_data ();

 const custom_data_sequence&
 custom_data () const;

 custom_data_sequence&
 custom_data ();
 };
}

If C++ exceptions are disabled, the any_type class has the following interface:

namespace xml_schema
{
 class any_type
 {
 public:
 // Custom data.
 //
 typedef xml_schema::data_sequence custom_data_sequence;
 typedef custom_data_sequence::iterator custom_data_iterator;
 typedef custom_data_sequence::const_iterator custom_data_const_iterator;

 bool
 allocate_custom_data ();

 const custom_data_sequence&
 custom_data () const;

 custom_data_sequence&
 custom_data ();
 };
}

The allocate_custom_data() function allocates the custom data sequence. With C++
exceptions disabled, it returns false if memory allocation has failed and true otherwise. For
more information on custom data, refer to Section 4.9, "Customizing the Object Model".

The default parser and serializer implementations for the anyType built-in type ignore all its
content and return an empty any_type instance. If your application needs to access this content,
then you will need to provide your own implementations of these parser and serializer and use the
custom data sequence to store the extracted data.

95January 2011 Embedded C++/Hybrid Mapping Getting Started Guide

5.14 Mapping for anyType

6 Parsing and Serialization
As was mentioned in the introduction, the C++/Hybrid mapping uses the C++/Parser and
C++/Serializer mappings for XML parsing and serialization. If your parsing and serialization
requirements are fairly basic, for example, parsing from and serializing to a file or a memory
buffer, then you don’t need to concern yourself with these two underlying mappings. On the other
hand, the C++/Parser and C++/Serializer mappings provide well-defined APIs which allow a
great amount of flexibility that may be useful in certain situations. In such cases, you may need to
get an understanding of how the C++/Parser and C++/Serializer mappings work. See the Embed-
ded C++/Parser Mapping Getting Started Guide and the Embedded C++/Serializer Mapping
Getting Started Guide for more detailed information on these mappings.

For each type defined in XML Schema, the C++/Parser and C++/Serializer mappings generate a
parser skeleton class and serializer skeleton class, respectively. These classes manage
parsing/serialization state, convert data between text and C++ types, and perform XML Schema
validation, if enabled. Parser skeletons deliver the parsed data and serializer skeletons request the
data to be serialized with callbacks. These callbacks are implemented by parser and serializer
implementation classes that are derived from the skeletons. If the application uses the C++/Parser
and C++/Serializer mappings directly, these implementation classes are normally written by the
application developer to perform some application-specific actions. In case of the C++/Hybrid
mapping, these implementations are automatically generated by the XSD/e compiler to parse
XML to object models and to serialize object models to XML. To request the generation of parser
skeletons and implementations, you need to specify the --generate-parser XSD/e
command line option. Similarly, to generate serializer skeletons and implementations, you will
need to use the --generate-serializer option.

Before an XML document can be parsed or serialized, the individual parser and serializer imple-
mentations need to be instantiated and connected to each other. Again, if the application uses the
C++/Parser and C++/Serializer mappings directly, this is done by the application developer.
While you can also do this with the generated C++/Hybrid parser and serializer implementations,
it is easier to request the generation of parser and serializer aggregate classes with the
--generate-aggregate options. Aggregate classes instantiate and connect all the necessary
individual parser and serializer implementations for a particular root element or type. Consider
again the hello.xsd schema from Chapter 2, "Hello World Example":

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:complexType name="hello">
 <xs:sequence>
 <xs:element name="greeting" type="xs:string"/>
 <xs:element name="name" type="xs:string" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

January 201196 Embedded C++/Hybrid Mapping Getting Started Guide

6 Parsing and Serialization

http://www.codesynthesis.com/projects/xsde/documentation/cxx/parser/guide/index.xhtml
http://www.codesynthesis.com/projects/xsde/documentation/cxx/parser/guide/index.xhtml
http://www.codesynthesis.com/projects/xsde/documentation/cxx/serializer/guide/index.xhtml
http://www.codesynthesis.com/projects/xsde/documentation/cxx/serializer/guide/index.xhtml

 <xs:element name="hello" type="hello"/>

</xs:schema>

If we compile this schema with the --generate-parser , --generate-serializer ,
and --generate-aggregate options, we will have two aggregate classes, hello_paggr
and hello_saggr , generated for the root hello element. The interface of the
hello_paggr class is presented below:

class hello_paggr
{
public:
 hello_paggr ();

 void
 pre ();

 hello*
 post ();

 hello_pimpl&
 root_parser ();

 static const char*
 root_name ();

 static const char*
 root_namespace ();
};

The pre() and post() functions call the corresponding callbacks on the root parser imple-
mentation. The root_parser() function returns the root parser implementation. The
root_name() and root_namespace() functions return the root element name and names-
pace, respectively.

As was shown in Chapter 2, "Hello World Example", we can use this parser aggregate to create
the document parser (supplied by the C++/Parser mapping) and perform the parsing:

hello_paggr hello_p;
xml_schema::document_pimpl doc_p (hello_p.root_parser (),
 hello_p.root_name ());
hello_p.pre ();
doc_p.parse ("hello.xml");
hello* h = hello_p.post ();

97January 2011 Embedded C++/Hybrid Mapping Getting Started Guide

6 Parsing and Serialization

For more information on the document_pimpl class, including the other variants of the
parse() function as well as error handling during parsing, see Chapter 7, "Document Parser
and Error Handling" in the Embedded C++/Parser Mapping Getting Started Guide.

The interface of the hello_saggr serializer aggregate mirrors that of hello_paggr and is
presented below:

class hello_saggr
{
public:
 hello_saggr ();

 void
 pre (const hello&);

 void
 post ();

 hello_simpl&
 root_serializer ();

 static const char*
 root_name ();

 static const char*
 root_namespace ();
};

The pre() and post() functions call the corresponding callbacks on the root serializer imple-
mentation. The root_serializer() function returns the root serializer implementation. The
root_name() and root_namespace() functions return the root element name and names-
pace, respectively.

As was shown in Chapter 2, "Hello World Example", we can use this serializer aggregate to
create the document serializer (supplied by the C++/Serializer mapping) and perform the serial-
ization:

hello_saggr hello_s;
xml_schema::document_simpl doc_s (hello_s.root_serializer (),
 hello_s.root_name ());
hello_s.pre (*h);
doc_s.serialize (std::cout, xml_schema::document_simpl::pretty_print);
hello_s.post ();

For more information on the document_simpl class, including the other variants of the
serialize() function as well as error handling during serialization, see Chapter 8, "Docu-
ment Serializer and Error Handling" in the Embedded C++/Serializer Mapping Getting Started
Guide.

January 201198 Embedded C++/Hybrid Mapping Getting Started Guide

6 Parsing and Serialization

http://www.codesynthesis.com/projects/xsde/documentation/cxx/parser/guide/index.xhtml#7
http://www.codesynthesis.com/projects/xsde/documentation/cxx/parser/guide/index.xhtml#7
http://www.codesynthesis.com/projects/xsde/documentation/cxx/serializer/guide/index.xhtml#8
http://www.codesynthesis.com/projects/xsde/documentation/cxx/serializer/guide/index.xhtml#8

6.1 Customizing Parsers and Serializers

The C++/Hybrid mapping allows you to customize the generated parser and serializer implemen-
tations. This mechanism can be used, for example, to implement filtering, partially event-driven
XML processing, as well as parsing of content matched by XML Schema wildcards. Filtering
allows only parts of the XML document to be parsed into the object model or only parts of the
object model to be serialized to XML. With partially event-driven parsing and serialization, we
can process parts of the document as they become available as well as handle documents that are
too large to fit into memory. This section expects you to have an understanding of the C++/Parser
and C++/Serializer programming models.

To request customization of a parser or serializer implementation, you will need to specify the
--custom-parser or --custom-serializer option, respectively. The argument format
for these two options is name[=[base][/include]]] . The name component is the XML
Schema type name being customized. Optional base is a C++ name that should be given to the
generated version. It is normally used as a base for the custom implementation. Optional
include is the header file that defines the custom implementation. It is #include ’ed into the
generated code immediately after (if base is specified) or instead of the generated version. The
following examples show how we can use these options:

--custom-parser foo
--custom-parser foo=foo_base_pimpl
--custom-parser foo=foo_base_pimpl/foo/foo-custom.hxx
--custom-parser foo=/foo/foo-custom.hxx

The first version instructs the XSD/e compiler not to generate the parser implementation for the
foo XML Schema type. The second version instructs the compiler to generate the parser imple-
mentation for type foo but call it foo_base_pimpl . The third version is similar to the second
except that the compiler generates the #include directive with the foo/foo-custom.hxx
file (which presumably defines foo_pimpl) right after the foo_base_pimpl class. The last
version instructs the XSD/e compiler to include foo/foo-custom.hxx instead of generating
the parser implementation for foo . If you omit the last component (include), then you can
include the custom parser/serializer definitions using one of the prologue or epilogue XSD/e
compiler options. See the XSD/e Compiler Command Line Manual for details.

Once you specify the --custom-parser or --custom-serializer option, you will need
to provide the custom implementation. You have a choice of either basing it on the generated
version and overriding some callbacks or implementing it from scratch.

In the remainder of this section we will examine how to customize the people parser and serial-
izer implementations from the example presented in Chapter 4, "Working with Object Models".
Our custom parser implementation will filter the records being parsed based on a person’s age.
Similarly, the serializer will only serialize records of a specific gender. The code presented below
is taken from the filter example in the XSD/e distribution. Other examples related to

99January 2011 Embedded C++/Hybrid Mapping Getting Started Guide

6.1 Customizing Parsers and Serializers

http://www.codesynthesis.com/projects/xsde/documentation/xsde.xhtml

parser/serializer customization are wildcard and streaming .

First, we compile the people.xsd schema and instruct the XSD/e compiler to customize the
parser and serializer implementations for the people XML Schema type:

$ xsde cxx-hybrid --generate-parser --generate-serializer \
--custom-parser people=people_base_pimpl/people-custom-pimpl.hxx \
--custom-serializer people=people_base_simpl/people-custom-simpl.hxx \
--generate-aggregate people.xsd

The custom people_pimpl parser implementation is based on the generated version and is
saved to people-custom-pimpl.hxx :

class people_pimpl: public people_base_pimpl
{
public:
 void
 age_filter (unsigned short min, unsigned short max)
 {
 min_age_ = min;
 max_age_ = max;
 }

 virtual void
 person (const ::person& p)
 {
 // Check if the age constraints are met.
 //
 unsigned short age = p.age ();

 if (age >= min_age_ && age <= max_age_)
 people_base_pimpl::person (p);
 }

private:
 unsigned short min_age_;
 unsigned short max_age_;
};

Here we override the person() callback and, if the filter conditions are satisfied, call the origi-
nal version which adds the person record to the object model. Note that if the person object
model class were variable-length, then the instance would be dynamically allocated and passed as
a pointer. In this situation, if we don’t use the object, we need to delete it, for example:

January 2011100 Embedded C++/Hybrid Mapping Getting Started Guide

6.1 Customizing Parsers and Serializers

virtual void
person (const ::person* p)
{
 unsigned short age = p->age ();

 if (age >= min_age_ && age <= max_age_)
 people_base_pimpl::person (p);
 else
 delete p;
}

The custom people_simpl parser implementation is also based on the generated version and
is saved to people-custom-simpl.hxx :

class people_simpl: public people_base_simpl
{
public:
 void
 gender_filter (gender g)
 {
 gender_ = g;
 }

 virtual bool
 person_next ()
 {
 // See if we have any more person records with the gender we
 // are interested in.
 //
 people::person_const_iterator& i = people_base_simpl_state_.person_;
 people::person_const_iterator& e = people_base_simpl_state_.person_end_;

 for (; i != e; ++i)
 {
 if (i->gender () == gender_)
 break;
 }

 return i != e;
 }

private:
 gender gender_;
};

Here we override the person_next() callback where we locate the next record that satisfies
the filter conditions. Note that we use the serialization state provided by the generated
people_base_simpl implementation.

101January 2011 Embedded C++/Hybrid Mapping Getting Started Guide

6.1 Customizing Parsers and Serializers

The following code fragment shows a test driver that uses the above implementations to filter the
data during parsing and serialization:

#include <memory>
#include <iostream>

#include "people.hxx"

#include "people-pimpl.hxx"
#include "people-simpl.hxx"

using namespace std;

int
main (int argc, char* argv[])
{
 // Parse.
 //
 people_paggr people_p;
 people_pimpl& root_p = people_p.root_parser ();

 // Initialize the filter.
 //
 root_p.age_filter (1, 30);

 xml_schema::document_pimpl doc_p (root_p, people_p.root_name ());

 people_p.pre ();
 doc_p.parse (argv[1]);
 auto_ptr<people> ppl (people_p.post ());

 // Print what we’ve got.
 //
 people::person_sequence& ps = ppl->person ();

 for (people::person_iterator i = ps.begin (); i != ps.end (); ++i)
 {
 cerr << "first: " << i->first_name () << endl
 << "last: " << i->last_name () << endl
 << "gender: " << i->gender ().string () << endl
 << "age: " << i->age () << endl
 << endl;
 }

 // Serialize.
 //
 people_saggr people_s;
 people_simpl& root_s = people_s.root_serializer ();

 // Initialize the filter.
 //

January 2011102 Embedded C++/Hybrid Mapping Getting Started Guide

6.1 Customizing Parsers and Serializers

 root_s.gender_filter (gender::female);

 xml_schema::document_simpl doc_s (root_s, people_s.root_name ());

 people_s.pre (*ppl);
 doc_s.serialize (cout, xml_schema::document_simpl::pretty_print);
 people_s.post ();
}

If we run this test driver on the following XML document:

<?xml version="1.0"?>
<people>

 <person>
 <first-name>John</first-name>
 <last-name>Doe</last-name>
 <gender>male</gender>
 <age>32</age>
 </person>

 <person>
 <first-name>Jane</first-name>
 <last-name>Doe</last-name>
 <gender>female</gender>
 <age>28</age>
 </person>

 <person>
 <first-name>Joe</first-name>
 <last-name>Dirt</last-name>
 <gender>male</gender>
 <age>25</age>
 </person>

</people>

We will get the following output:

first: Jane
last: Doe
gender: female
age: 28

first: Joe
last: Dirt
gender: male
age: 25

<people>
 <person>

103January 2011 Embedded C++/Hybrid Mapping Getting Started Guide

6.1 Customizing Parsers and Serializers

 <first-name>Jane</first-name>
 <last-name>Doe</last-name>
 <gender>female</gender>
 <age>28</age>
 </person>
</people>

7 Binary Representation
Besides reading from and writing to XML, the C++/Hybrid mapping also allows you to save the
object model to and load it from a number of predefined as well as custom data representation
formats. The predefined binary formats are CDR (Common Data Representation) and XDR
(eXternal Data Representation). A custom format can easily be supported by providing insertion
and extraction operators for basic types.

Binary representations contain only the data without any meta information or markup. Conse-
quently, saving to and loading from a binary representation can be an order of magnitude faster as
well as result in a much smaller footprint compared to parsing and serializing the same data in
XML. Furthermore, the resulting representation is normally several times smaller than the equiv-
alent XML representation. These properties make a binary representation ideal for internal data
exchange and storage. A typical application that uses this facility stores the data and communi-
cates within the system using a binary format and reads/writes the data in XML when communi-
cating with the outside world.

In order to request the generation of insertion and extraction operators for a specific predefined or
custom data representation stream, you will need to use the --generate-insertion and
--generate-extraction compiler options. See the XSD/e Compiler Command Line
Manual for more information.

The XSD/e runtime provides implementations of the base insertion and extraction operators for
the ACE (Adaptive Communication Environment) CDR streams and the XDR API. The XDR
API is available out of the box on most POSIX systems as part of Sun RPC. On other platforms
you may need to install a third-party library which provides the XDR API. The XSD/e compiler
recognizes two special argument values to the --generate-insertion and --gener-
ate-extraction options: CDR and XDR. When one of these arguments is specified, the corre-
sponding implementation from the XSD/e runtime is automatically used. The following two
sections describe each of these two formats in more detail. It is also possible to add support for
saving the object model to and loading it from custom data representation formats as discussed in
the last section of this chapter.

The saving of the object model types to a representation stream is implemented with stream inser-
tion operators (operator<<). Similarly, loading of the object model from a representation
stream is implemented with stream extraction operators (operator>>). The insertion and
extraction operators for the built-in XML Schema types as well as the sequence templates are

January 2011104 Embedded C++/Hybrid Mapping Getting Started Guide

7 Binary Representation

http://www.codesynthesis.com/projects/xsde/documentation/xsde.xhtml
http://www.codesynthesis.com/projects/xsde/documentation/xsde.xhtml

provided by the stream implementation (that is, by the XSD/e runtime in case of CDR and XDR
and by you for custom formats). The XSD/e compiler automatically generates insertion and
extraction operators for the generated object model types.

When C++ exceptions are enabled (Section 3.3, "C++ Exceptions"), the signatures of the inser-
tion and extraction operators are as follows:

void
operator<< (ostream&, const type&);

void
operator>> (istream&, type&);

The insertion and extraction errors are indicated by throwing stream-specific exceptions. When
C++ exceptions are disabled, the signatures of the insertion and extraction operators are as
follows:

bool
operator<< (ostream&, const type&);

bool
operator>> (istream&, type&);

In this case the insertion and extraction operators return true if the operation was successful and
false otherwise. The stream object may provide additional error information.

7.1 CDR (Common Data Representation)

When you request the generation of CDR stream insertion and extraction operators, the
ocdrstream and icdrstream types are defined in the xml_schema namespace. Addition-
ally, if C++ exceptions are enabled, the cdr_exception exception is also defined in
xml_schema . The icdrstream and ocdrstream types are simple wrappers for the
ACE_InputCDR and ACE_OutputCDR streams. The following code fragment shows how we can
use these types when C++ exceptions are enabled:

try
{
 const type& x = ... // Object model.

 // Save to a CDR stream.
 //
 ACE_OutputCDR ace_ocdr;
 xml_schema::ocdrstream ocdr (ace_ocdr);

 ocdr << x;

 // Load from a CDR stream.

105January 2011 Embedded C++/Hybrid Mapping Getting Started Guide

7.1 CDR (Common Data Representation)

 //
 ACE_InputCDR ace_icdr (buf, size);
 xml_schema::icdrstream icdr (ace_icdr);

 type copy;
 icdr >> copy;
}
catch (const xml_schema::cdr_exception&)
{
 cerr << "CDR operation failed" << endl;
}

The same code fragment but when C++ exceptions are disabled:

const type& x = ... // Object model.

// Save to a CDR stream.
//
ACE_OutputCDR ace_ocdr;
xml_schema::ocdrstream ocdr (ace_ocdr);

if (!(ocdr << x))
{
 cerr << "CDR operation failed" << endl;
}

// Load from a CDR stream.
//
ACE_InputCDR ace_icdr (buf, size);
xml_schema::icdrstream icdr (ace_icdr);

type copy;

if (!(icdr >> copy))
{
 cerr << "CDR operation failed" << endl;
}

The cdr example which can be found in the examples/cxx/hybrid/binary/ directory of
the XSD/e distribution includes complete source code that shows how to save the object model to
and load it from the CDR format.

7.2 XDR (eXternal Data Representation)

When you request the generation of XDR stream insertion and extraction operators, the
oxdrstream and xcdrstream types are defined in the xml_schema namespace. Addition-
ally, if C++ exceptions are enabled, the xdr_exception exception is also defined in
xml_schema . The ixdrstream and oxdrstream types are simple wrappers for the XDR
API. The following code fragment shows how we can use these types when C++ exceptions are

January 2011106 Embedded C++/Hybrid Mapping Getting Started Guide

7.2 XDR (eXternal Data Representation)

enabled:

try
{
 const type& x = ... // Object model.

 // Save to a XDR stream.
 //
 XDR xdr;
 xdrrec_create (&xdr, ...);
 xml_schema::oxdrstream oxdr (xdr);

 oxdr << x;

 // Load from a XDR stream.
 //
 xdrrec_create (&xdr, ...);
 xml_schema::ixdrstream ixdr (xdr);

 type copy;
 ixdr >> copy;
}
catch (const xml_schema::xdr_exception&)
{
 cerr << "XDR operation failed" << endl;
}

The same code fragment but when C++ exceptions are disabled:

const type& x = ... // Object model.

// Save to a XDR stream.
//
XDR xdr;
xdrrec_create (&xdr, ...);
xml_schema::oxdrstream oxdr (xdr);

if (!(oxdr << x))
{
 cerr << "XDR operation failed" << endl;
}

// Load from a XDR stream.
//
xdrrec_create (&xdr, ...);
xml_schema::ixdrstream ixdr (xdr);

type copy;

107January 2011 Embedded C++/Hybrid Mapping Getting Started Guide

7.2 XDR (eXternal Data Representation)

if (!(ixdr >> copy))
{
 cerr << "XDR operation failed" << endl;
}

The xdr example which can be found in the examples/cxx/hybrid/binary/ directory of
the XSD/e distribution includes complete source code that shows how to save the object model to
and load it from the XDR format.

7.3 Custom Representations

To add support for saving the object model to and loading it from a custom format, you will need
to perform the following general steps:

1. Generate a header file corresponding to the XML Schema namespace using the --gener-
ate-xml-schema compiler option.

2. Implement custom stream insertion and extraction operators for the built-in XML Schema
types and sequence templates. Include the header file obtained in the previous step to get
definitions for these types.

3. Compile your schemas with the --generate-insertion and --gener-
ate-extraction options. The arguments to these options will be your custom output
and input stream types, respectively. Use the --hxx-prologue option to include the defi-
nitions for these stream types into the generated code. Also use the
--extern-xml-schema option to include the header file obtained in the first step
instead of generating the same code directly.

The custom example which can be found in the examples/cxx/hybrid/binary/ direc-
tory of the XSD/e distribution includes complete source code that shows how to save the object
model to and load it from a custom format using the raw binary representation as an example.
You can use the source code from this example as a base to implement support for your own
format.

January 2011108 Embedded C++/Hybrid Mapping Getting Started Guide

7.3 Custom Representations

	Preface
	About This Document
	More Information

	1 Introduction
	1.1 Mapping Overview
	1.2 Benefits

	2 Hello World Example
	2.1 Writing XML Document and Schema
	2.2 Translating Schema to C++
	2.3 Implementing Application Logic
	2.4 Compiling and Running
	2.5 Adding Serialization
	2.6 A Minimal Version

	3 Mapping Configuration
	3.1 Standard Template Library
	3.2 Input/Output Stream Library
	3.3 C++ Exceptions
	3.4 XML Schema Validation
	3.5 64-bit Integer Type
	3.6 Parser and Serializer Reuse
	3.7 Support for Polymorphism
	3.8 Custom Allocators

	4 Working with Object Models
	4.1 Namespaces
	4.2 Memory Management
	4.3 Enumerations
	4.4 Attributes and Elements
	4.5 Compositors
	4.6 Accessing the Object Model
	4.7 Modifying the Object Model
	4.8 Creating the Object Model from Scratch
	4.9 Customizing the Object Model
	4.10 Polymorphic Object Models

	5 Mapping for Built-In XML Schema Types
	5.1 Mapping for QName
	5.2 Mapping for NMTOKENS and IDREFS
	5.3 Mapping for base64Binary and hexBinary
	5.4 Time Zone Representation
	5.5 Mapping for date
	5.6 Mapping for dateTime
	5.7 Mapping for duration
	5.8 Mapping for gDay
	5.9 Mapping for gMonth
	5.10 Mapping for gMonthDay
	5.11 Mapping for gYear
	5.12 Mapping for gYearMonth
	5.13 Mapping for time
	5.14 Mapping for anyType

	6 Parsing and Serialization
	6.1 Customizing Parsers and Serializers

	7 Binary Representation
	7.1 CDR (Common Data Representation)
	7.2 XDR (eXternal Data Representation)
	7.3 Custom Representations

