Embedded C++/Parser Mapping
Getting Started Guide

Copyright © 2005-2011 CODE SYNTHESIS TOOLS CC

Permission is granted to copy, distribute and/or modify this document under the terms of the
[GNU Free Documentation License, versior] 1.2; with no Invariant Sections, no Front-Cover Texts
and no Back-Cover Texts.

This document is available in the following formats: XHTVIL, PDF,|and PostScript.

http://www.codesynthesis.com/licenses/fdl-1.2.txt
http://www.codesynthesis.com/projects/xsde/documentation/xsde.xhtml
http://www.codesynthesis.com/mailman/listinfo/xsde-users
http://www.codesynthesis.com/pipermail/xsde-users/

Table of Contents

Prefacg .
[About This Documeht

[More Informat|0|h.

(1.1 Mapping OverweW

1.2 Benefits .
[2 Hello World Examplie

[2.1 Writing XML Document and Schetna .

[2.2 Translating Schema to Q++
[2.3 Implementing Application Lodic
[2.4 Compiling and Running
[3 Parser Skeletons
[3.1 Implementing the Gender Parser
[3.2 Implementing the Person Parser .
[3.3 Implementing the People Pafser .
[3.4 Connecting the Parsers Togdther.
4 Type Maps. .
[4.1 Object Mod¢| .
(4.2 Type Map File FormIaI
[4.3 Parser Implementatigns .
[5 Mapping Configuratidn .
[5.1 Standard Template lerary
[5.2 Input/Output Stream Librgry .
[5.3 C++ Exceptionjs . .
[5.4 XML Schema Validatign .
[5.5 64-bit Integer Type
[5.6 Parser Reuse .
[5.7 Support for Polymorphls’,m
[5.8 Custom Allocatofs
(5.9 A Minimal Examplg .
[6 Built-In XML Schema Type Parsers .
[6.1 ONameParsdr .
[6.2 NMTOKENSndIDREFS Parserls

[6.3base64Binary andhexBinary Parsers .

[6.4 Time Zone Representation
[6.5date Parsdr . .
[6.6dateTime Parseqr.
[6.7duration Parseqr
[6.8gDay Parsdr .

[6.9gMonth Parsdr

January 2011 Embedded C++/Parser Mapping Getting Started Guide

Table of Contents

OO PR WWNERPRERPPEPPEPPE

Table of Contents

[6.10gMonthDay Parsdr .
[6.11gYear Parser .
[6.12gYearMonth Parser.
[6.13time Parser.
[7 Document Parser and Error Handlllng
[7.1 Document Parger.
[7.2 Exceptions
[7.3 Error Codgs .
[7.4 Reusing Parsers after an EIrror
[Appendix A — Supported XML Schema Constrhcts

ii Embedded C++/Parser Mapping Getting Started Guide

71
12
12
73
74
15
4
79
83
85

January 2011

Preface

Preface

About This Document

The goal of this document is to provide you with an understanding of the C++/Parser program-
ming model and allow you to efficiently evaluate XSD/e against your project’s technical require-
ments. As such, this document is intended for embedded C++ developers and software architects
who are looking for an embedded XML processing solution. Prior experience with XML and
C++ is required to understand this document. Basic understanding of XML Schema is advanta-
geous but not expected or required.

More Information

Beyond this guide, you may also find the following sources of information useful:

(XSD/e Compiler Command Line Manjal
® The INSTALL file in the XSD/e distribution provides build instructions for various plat-
forms.
® The examples/cxx/parser/ directory in the XSD/e distribution contains a collection
of examples and a README file with an overview of each example.
e The[xsde-us€rs mailing list is the place to ask technical questions about XSD/e and the
Embedded C++/Parser mapping. Furthermore[the arthives may already have answers to
some of your questions.

1 Introduction

Welcome to CodeSynthesis XSD/e and the Embedded C++/Parser mapping. XSD/e is a validat-
ing XML parser/serializer generator for mobile and embedded systems. Embedded C++/Parser is
a W3C XML Schema to C++ mapping that represents an XML vocabulary as a set of parser
skeletons which you can implement to perform XML processing as required by your application
logic.

1.1 Mapping Overview

The Embedded C++/Parser mapping provides event-driven, stream-oriented XML parsing, XML
Schema validation, and C++ data binding. It was specifically designed and optimized for mobile
and embedded systems where hardware constraints require high efficiency and economical use of
resources. As a result, the generated parsers are 2-10 times faster than general-purpose validating
XML parsers while at the same time maintaining extremely low static and dynamic memory foot-
prints. For example, a validating parser executable can be as small as 120KB in size. The size can
be further reduced by disabling support for XML Schema validation.

January 2011 Embedded C++/Parser Mapping Getting Started Guide 1

http://www.codesynthesis.com/projects/xsde/documentation/xsde.xhtml
http://www.codesynthesis.com/mailman/listinfo/xsde-users
http://www.codesynthesis.com/pipermail/xsde-users/

1.2 Benefits

The generated code and the runtime library are also highly-portable and, in their minimal config-
uration, can be used without STL, RTTI, iostream, C++ exceptions, and C++ templates.

To speed up application development, the C++/Parser mapping can be instructed to generate
sample parser implementations and a test driver which can then be filled with the application
logic code. The mapping also provides a wide range of mechanisms for controlling and customiz-
ing the generated code.

The next chapter shows how to create a simple application that uses the Embedded C++/Parser
mapping to parse, validate, and extract data from a simple XML instance document. The follow-
ing chapters describe the Embedded C++/Parser mapping in more detail.

1.2 Benefits

Traditional XML access APIs such as Document Object Model (DOM) or Simple API for XML
(SAX) as well as general-purpose XML Schema validators have a number of drawbacks that
make them less suitable for creating mobile and embedded XML processing applications. These
drawbacks include:

® Text-based representation results in inefficient use of resources.

e Extra validation code that is not used by the application.

® Generic representation of XML in terms of elements, attributes, and text forces an applica-
tion developer to write a substantial amount of bridging code that identifies and transforms
pieces of information encoded in XML to a representation more suitable for consumption by
the application logic.

® String-based flow control defers error detection to runtime. It also reduces code readability
and maintainability.

® |ack of type safety because all information is represented as text.

® Resulting applications are hard to debug, change, and maintain.

In contrast, statically-typed, vocabulary-specific parser skeletons produced by the Embedded
C++/Parser mapping use native data representations (for example, integers are passed as integers,
not as text) and include validation code only for XML Schema constructs that are used in the
application. This results in efficient use of resources and compact object code.

Furthermore, the parser skeletons allow you to operate in your domain terms instead of the
generic elements, attributes, and text. Static typing helps catch errors at compile-time rather than
at run-time. Automatic code generation frees you for more interesting tasks (such as doing some-
thing useful with the information stored in the XML documents) and minimizes the effort needed
to adapt your applications to changes in the document structure. To summarize, the C++/Parser
mapping has the following key advantages over generic XML access APIs:

2 Embedded C++/Parser Mapping Getting Started Guide January 2011

2 Hello World Example

® Ease of use.The generated code hides all the complexity associated with recreating the
document structure, maintaining the dispatch state, and converting the data from the text
representation to data types suitable for manipulation by the application logic. Parser skele-
tons also provide a convenient mechanism for building custom in-memory representations.

® Natural representation. The generated parser skeletons implement parser callbacks as
virtual functions with names corresponding to elements and attributes in XML. As a result,
you process the XML data using your domain vocabulary instead of generic elements,
attributes, and text.

® Concise codeWith a separate parser skeleton for each XML Schema type, the application
implementation is simpler and thus easier to read and understand.

e Safety.The XML data is delivered to parser callbacks as statically typed objects. The parser
callbacks themselves are virtual functions. This helps catch programming errors at
compile-time rather than at runtime.

e Maintainability. Automatic code generation minimizes the effort needed to adapt the appli-
cation to changes in the document structure. With static typing, the C++ compiler can
pin-point the places in the application code that need to be changed.

e Efficiency. The generated parser skeletons use native data representations and combine data
extraction, validation, and even dispatching in a single step. This makes them much more
efficient than traditional architectures with separate stages for validation and data extrac-
tion/dispatch.

2 Hello World Example

In this chapter we will examine how to parse a very simple XML document using the
XSD/e-generated C++/Parser skeletons. All the code presented in this chapter is based on the
hello example which can be found in teeamples/cxx/parser/ directory of the XSD/e
distribution.

2.1 Writing XML Document and Schema

First, we need to get an idea about the structure of the XML documents we are going to process.
Ourhello.xml | for example, could look like this:

<?xml version="1.0"?>
<hello>

<greeting>Hello</greeting>
<name>sun</name>
<name>moon</name>

<pname>world</name>

</hello>

January 2011 Embedded C++/Parser Mapping Getting Started Guide 3

2.2 Translating Schema to C++

Then we can write a description of the above XML in the XML Schema language and save it into
hello.xsd

<?xml version="1.0"?>
<xs:schema xmins:xs="http://www.w3.0rg/2001/XMLSchema">

<xs:complexType name="hello">
<xs:sequence>
<xs:element name="greeting" type="xs:string"/>
<xs:element name="name" type="xs:string" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>

<xs:element name="hello" type="hello"/>

</xs:schema>

Even if you are not familiar with the XML Schema language, it should be easy to connect decla-
rations inhello.xsd to elements itello.xml . Thehello type is defined as a sequence of

the nestedreeting andname elements. Note that the term sequence in XML Schema means
that elements should appear in a particular order as opposed to appearing multiple times. The
name element has itmmaxOccurs property set teinbounde which means it can appear multi-

ple times in an XML document. Finally, the globally-defifedlo element prescribes the root
element for our vocabulary. For an easily-approachable introduction to XML Schema refer to
(XML Schema Part 0: Primler.

The above schema is a specification of our vocabulary; it tells everybody what valid XML
instances of our vocabulary should look like. The next step is to compile this schema to generate
C++ parser skeletons.

2.2 Translating Schema to C++

Now we are ready to translate dwello.xsd to C++ parser skeletons. To do this we invoke
the XSD/e compiler from a terminal (UNIX) or a command prompt (Windows):

$ xsde cxx-parser hello.xsd

The XSD/e compiler produces two C++ fildgllo-pskel.hxx andhello-pskel.cxx
The following code fragment is taken fronello-pskel.hxx ; it should give you an idea
about what gets generated:

class hello_pskel

{

public:
/I Parser callbacks. Override them in your implementation.
1
virtual void

4 Embedded C++/Parser Mapping Getting Started Guide January 2011

http://www.w3.org/TR/xmlschema-0/

2.2 Translating Schema to C++

pre ();

virtual void
greeting (const std::string&);

virtual void
name (const std::string&);

virtual void
post_hello ();

/I Parser construction API.

1

void

greeting_parser (xml_schema::string_pskel&);

void
name_parser (xml_schema::string_pskel&);

void
parsers (xml_schema::string_pskel& /* greeting */,
xml_schema::string_pskel& /* name */);

private:
h

The first four member functions shown above are called parser callbacks. You would normally
override them in your implementation of the parser to do something useful. Let’'s go through all
of them one by one.

Thepre() function is an initialization callback. It is called when a new element oftigfle

is about to be parsed. You would normally use this function to allocate a new instance of the
resulting type or clear accumulators that are used to gather information during parsing. The
default implementation of this function does nothing.

The post_hello() function is a finalization callback. Its name is constructed by adding the
parser skeleton name to thest_ prefix. The finalization callback is called when parsing of the
element is complete and the result, if any, should be returned. Note that in our case the return type

of post_hello() isvoid which means there is nothing to return. More on parser return types
later.
You may be wondering why the finalization callback is caledst hello() instead of

post() just like pre() . The reason for this is that finalization callbacks can have different
return types and result in function signature clashes across inheritance hierarchies. To prevent
this, the signatures of finalization callbacks are made unique by adding the type name to their
names.

January 2011 Embedded C++/Parser Mapping Getting Started Guide 5

2.3 Implementing Application Logic

The greeting() andname() functions are called when tlggeeting andname elements
have been parsed, respectively. Their arguments are ottyp&ring and contain the data
extracted from XML.

The last three functions are for connecting parsers to each other. For example, there is a prede-
fined parser for built-in XML Schema tym#ring in the XSD/e runtime. We will be using it to
parse the contents gfeeting andname elements, as shown in the next section.

2.3 Implementing Application Logic

At this point we have all the parts we need to do something useful with the information stored in
XML documents. The first step is to implement the parser:

#include <iostream>
#include "hello-pskel.hxx"

class hello_pimpl: public hello_pskel

{
public:
virtual void
greeting (const std::string& g)

{
greeting_ =g;

}

virtual void
name (const std::string& n)

{

std::cout << greeting_ << ", " << n << "I" << std::endl;

}

private:
std::string greeting_;

h

We left bothpre() and post_hello() with the default implementations; we don’t have
anything to initialize or return. The rest is pretty straightforward: we store the greeting in a
member variable and later, when parsing names, use it to say hello.

An observant reader my ask what happens ihdrae element comes befoggeeting ? Don't

we need to make suggeeting_ was initialized and report an error otherwise? The answer is
no, we don’t have to do any of this. Thello_pskel parser skeleton performs validation of
XML according to the schema from which it was generated. As a result, it will check the order of
thegreeting andname elements and report an error if it is violated.

6 Embedded C++/Parser Mapping Getting Started Guide January 2011

2.3 Implementing Application Logic

Now it is time to put this parser implementation to work:
using namespace std;

int
main (int argc, char* argv[])
{

try

{

/I Construct the parser.

1

xml_schema::string_pimpl string_p;
hello_pimpl hello_p;

hello_p.greeting_parser (string_p);
hello_p.name_parser (string_p);

/I Parse the XML instance.
1
xml_schema::document_pimpl doc_p (hello_p, "hello");

hello_p.pre ();

doc_p.parse (argv[1]);

hello_p.post_hello ();
}

catch (const xml_schema::parser_exception& e)

{

cerr << argv[l] << ™" << e.line () << ™" << e.column ()
<< " "<<etext () << endl
return 1,

}
}

The first part of this code snippet instantiates individual parsers and assembles them into a
complete vocabulary parsemml_schema::string_pimpl is an implementation of a parser

for built-in XML Schema typestring . It is provided by the XSD/e runtime along with parsers

for other built-in types (for more information on the built-in parsers[see Chapter 6, "Built-In
(XML Schema Type Parsefs"). We usking_pimpl to parse thegygreeting and name
elements as indicated by the callgteeting_parser() andname_parser()

Then we instantiate a document parsgwc(p). The first argument to its constructor is the
parser for the root elemertgllo p in our case). The second argument is the root element
name.

The final piece is the calls fre() , parse() , andpost_hello() . The call toparse()
perform the actual XML parsing while the callspiee() andpost_hello() make sure that
the parser for the root element can perform proper initialization and cleanup.

January 2011 Embedded C++/Parser Mapping Getting Started Guide 7

3 Parser Skeletons

While our parser implementation and test driver are pretty small and easy to write by hand, for
bigger XML vocabularies it can be a substantial effort. To help with this task XSD/e can automat-

ically generate sample parser implementations and a test driver from your schemas. You can
request the generation of a sample implementation with empty function bodies by specifying the

--generate-noop-impl option. Or you can generate a sample implementation that prints
the data store in XML by using thegenerate-print-impl option. To request the genera-
tion of a test driver you can use thgenerate-test-driver option. For more informa-

tion on these options refer to fhe XSD/e Compiler Command Line Manualg&inerated’
example in the XSD/e distribution shows the sample implementation generation feature in action.

2.4 Compiling and Running

After saving all the parts from the previous sectiomdiiver.cxx , we are ready to compile
our first application and run it on the test XML document. On UNIX this can be done with the
following commands:

$ c++ -l.../libxsde -c driver.cxx hello-pskel.cxx

$ c++ -o driver driver.o hello-pskel.o .../libxsde/xsde/libxsde.a
$./driver hello.xml

Hello, sun!

Hello, moon!

Hello, world!

Here.../libxsde represents the path to thbxsde directory in the XSD/e distribution.
We can also test the error handling. To test XML well-formedness checking, we can try to parse
hello-pskel.hxx

$./driver hello-pskel.hxx
hello-pskel.hxx:1:0: not well-formed (invalid token)

We can also try to parse a valid XML but not from our vocabulary, for exameptexsd

$./driver hello.xsd
hello.xsd:2:57: unexpected element encountered

3 Parser Skeletons

As we have seen in the previous chapter, the XSD/e compiler generates a parser skeleton class for
each type defined in XML Schema. In this chapter we will take a closer look at different func-
tions that comprise a parser skeleton as well as the way to connect our implementations of these
parser skeletons to create a complete parser.

8 Embedded C++/Parser Mapping Getting Started Guide January 2011

http://www.codesynthesis.com/projects/xsde/documentation/xsde.xhtml

3 Parser Skeletons

In this and subsequent chapters we will use the following schema that describes a collection of
person records. We save itprople.xsd

<?xml version="1.0"?>
<xs:schema xmins:xs="http://www.w3.0rg/2001/XMLSchema">

<xs:simpleType name="gender">
<xs:.restriction base="xs:string">
<xs:enumeration value="male"/>
<xs:enumeration value="female"/>
</xs:restriction>
</xs:simpleType>

<xs:complexType name="person">
<xs:sequence>
<xs:element name="first-name" type="xs:string"/>
<xs:element name="last-name" type="xs:string"/>
<xs:element name="gender" type="gender"/>
<xs:element name="age" type="xs:short"/>
</xs:sequence>
</xs:complexType>

<xs:complexType name="people">
<xs:sequence>
<xs:element name="person" type="person" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>

<xs:element name="people" type="people"/>

</xs:schema>

A sample XML instance to go along with this schema is savpdaple.xml

<?xml version="1.0"?>
<people>
<person>
<first-name>John</first-name>
<last-name>Doe</last-name>
<gender>male</gender>
<age>32</age>
</person>
<person>
<first-name>Jane</first-name>
<last-name>Doe</last-name>
<gender>female</gender>
<age>28</age>
</person>
</people>

January 2011 Embedded C++/Parser Mapping Getting Started Guide 9

3.1 Implementing the Gender Parser

Compilingpeople.xsd with the XSD/e compiler results in three parser skeletons being gener-
ated:gender_pskel , person_pskel , andpeople_pskel . We are going to examine and
implement each of them in the subsequent sections.

3.1 Implementing the Gender Parser

The generatedender_pskel parser skeleton looks like this:

class gender_pskel: public xml_schema::string_pskel

{
public:
gender_pskel (xml_schema::string_pskel* base_impl);

/I Parser callbacks. Override them in your implementation.
1
virtual void

pre ();

virtual void
post_gender ();

k

Notice thatgender_pskel inherits fromxml_schema::string_pskel which is a parser
skeleton for built-in XML Schema typsring and is predefined in the XSD/e runtime library.
This is an example of the general rule that parser skeletons follow: if a type in XML Schema
inherits from another then there will be an equivalent inheritance between the corresponding
parser skeleton classes. Tgender _pskel class also declares a constructor which expects a
pointer to the base parser skeleton. We will discuss the purpose of this constructor shortly.

The pre() andpost_gender() callbacks should look familiar from the previous chapter.
Let's now implement the parser. Our implementation will simply print the gendeuto:

class gender_pimpl: public gender_pskel

{
public:
gender_pimpl ()
: gender_pskel (&base_impl)

{

}

virtual void
post_gender ()

{
std::string s = post_string ();
cout << "gender: " << s << endl;

}

10 Embedded C++/Parser Mapping Getting Started Guide January 2011

3.1 Implementing the Gender Parser

private:

xml_schema::string_pimpl base_impl_;

3

While the code is quite short, there is a lot going on. First, notice that we define a member vari-
able base_impl_ of type xml_schema::string_pimpl and then pass it to the
gender_pskel ’s constructor. We have encountereanl_schema::string_pimpl

already; it is an implementation of thkxenl_schema::string_pskel parser skeleton for

built-in XML Schema typestring . By passingbase_impl_ to the gender_pskel s
constructor we provide an implementation for the part of the parser skeleton that is inherited from
string_pskel

This is another common theme in the C++/Parser programming model: reusing implementations
of the base parsers in the derived ones. In our sasgy_pimpl will do all the dirty work of
extracting the data and we can just get it at the end with the galktostring() . For more
information on parser implementation reuse ref¢r to Section 5.6, "Parser|Reuse".

In case you are curious, here are the definitionsxfol_schema::string_pskel and
xml_schema::string_pimpl

namespace xml_schema

{
class string_pskel: public parser_simple_content
{
public:

virtual std::string

post_string () = 0;

2

class string_pimpl: public string_pskel

{
public:
virtual void

_pre ();

virtual void
_characters (const xml_schema::ro_string&);

virtual std::string
post_string ();

protected:
std::string str_;
2
}

January 2011 Embedded C++/Parser Mapping Getting Started Guide 11

3.1 Implementing the Gender Parser

There are three new pieces in this code that we haven't seen yet. Those are the
parser_simple_content class and thepre() and_characters() functions. The
parser_simple_content class is defined in the XSD/e runtime and is a base class for all
parser skeletons that conform to the simple content model in XML Schema. Types with the
simple content model cannot have nested elements—only text and attributes. There is also the
parser_complex_content class which corresponds to the complex content mode (types
with nested elements, for exampberson from people.xsd).

The _pre() function is a parser callback. Remember we talked aboutpté@ and
post *() callbacks in the previous chapter? There are actually two more callbacks with similar
roles:_pre() and_post() . As aresult, each parser skeleton has four special callbacks:

virtual void
pre ();

virtual void
_pre ();

virtual void
_post ();

virtual void
post_name ();

pre() and_pre() are initialization callbacks. They get called in that order before a new
instance of the type is about to be parsed. The difference bepwe@n and pre() s
conventionalpre() can be completely overridden by a derived parser. The derived parser can
also override pre() but has to always call the original version. This allows you to partition
initialization into customizable and required parts.

Similarly, post() and post_name() are finalization callbacks with exactly the same
semanticspost_name() can be completely overridden by the derived parser while the original
_post() should always be called.

The final bit we need to discuss in this section is _ttlearacters() function. As you might

have guessed, it is also a callback. A low-level one that delivers raw character content for the type
being parsed. You will seldom need to use this callback directly. Using implementations for the

built-in parsers provided by the XSD/e runtime is usually a simpler and more convenient alterna-

tive.

At this point you might be wondering why sonmost *() callbacks, for example
post_string() , return some data while others, for exammbst_gender() , havevoid
as a return type. This is a valid concern and it will be addressed in the next chapter.

12 Embedded C++/Parser Mapping Getting Started Guide January 2011

3.2 Implementing the Person Parser

The generategerson_pskel parser skeleton looks like this:
class person_pskel: public xml_schema::parser_complex_content
{
public:
/I Parser callbacks. Override them in your implementation.
1
virtual void

pre ();

virtual void
first_ name (const std::string&);

virtual void
last_name (const std::string&);

virtual void
gender ();

virtual void
age (short);

virtual void
post_person ();

/I Parser construction API.

1

void

first_name_parser (xml_schema::string_pskel&);

void
last name_parser (xml_schema::string_pskel&);

void
gender_parser (gender_pskel&);

void
age_parser (xml_schema::short_pskel&);

void

parsers (xml_schema::string_pskel& /* first-name */,
xml_schema::string_pskel& /* last-name */,
gender_pskel& [* gender */,
xml_schema::short_pskel& /* age */);

January 2011

Embedded C++/Parser Mapping Getting Started Guide

3.2 Implementing the Person Parser

13

3.3 Implementing the People Parser

As you can see, we have a parser callback for each of the nested elements foupdrsothe
XML Schema type. The implementation of this parser is straightforward:

class person_pimpl: public person_pskel

{
public:
virtual void
first_ name (const std::string& n)

{

cout << "first: " << f << endl;

}

virtual void
last_name (const std::string&)

{

cout << "last: " << | << endl;

}

virtual void
age (short a)

{

cout << "age: " << a << endl;

}
h

Notice that we didn't override thgender() callback because all the printing is done by
gender_pimpl

3.3 Implementing the People Parser

The generatedeople_pskel parser skeleton looks like this:

class people_pskel: public xml_schema::parser_complex_content

{

public:
/I Parser callbacks. Override them in your implementation.
1
virtual void

pre ();

virtual void
person ();

virtual void
post_people ();

/I Parser construction API.

1/
void

14 Embedded C++/Parser Mapping Getting Started Guide January 2011

3.4 Connecting the Parsers Together

person_parser (person_pskel&);

void
parsers (person_pskel& /* person */);

%

The person() callback will be called after parsing eagterson element. While
person_pimpl does all the printing, one useful thing we can do in this callback is to print an
extra newline after each person record so that our output is more readable:

class people_pimpl: public people_pskel
{
public:

virtual void

person ()

{

cout << endl;

}
k

Now it is time to put everything together.

3.4 Connecting the Parsers Together

At this point we have all the individual parsers implemented and can proceed to assemble them
into a complete parser for our XML vocabulary. The first step is to instantiate all the individual
parsers that we will need:

xml_schema::short_pimpl short_p;
xml_schema::string_pimpl string_p;

gender_pimpl gender_p;
person_pimpl person_p;
people_pimpl people_p;

Notice that our schema uses two built-in XML Schema typegsig for thefirst-name
andlast-name elements as well ahort for age. We will use predefined parsers that come
with the XSD/e runtime to handle these types. The next step is to connect all the individual
parsers. We do this with the help of functions defined in the parser skeletons and marked with the
"Parser Construction API" comment. One way to do it is to connect each individual parser by
calling the*_parser() functions:

person_p.first_name_parser (string_p);

person_p.last_name_parser (string_p);

person_p.gender_parser (gender_p);

person_p.age_parser (short_p);

people_p.person_parser (person_p);

January 2011 Embedded C++/Parser Mapping Getting Started Guide 15

3.4 Connecting the Parsers Together

You might be wondering what happens if you do not provide a parser by not calling one of the
* parser() functions. In that case the corresponding XML content will be skipped, including
validation. This is an efficient way to ignore parts of the document that you are not interested in.

An alternative, shorter, way to connect the parsers is by usirgateers() functions which
connects all the parsers for a given type at once:

person_p.parsers (string_p, string_p, gender_p, short_p);
people_p.parsers (person_p);

The following figure illustrates the resulting connections. Notice the correspondence between
return types of thepost *() functions and argument types of element callbacks that are
connected by the arrows.

class string pimpl

{
string
r{.LaEs persan_pimpl —apost string ();
vold 2
first name (string) ;--—
: id 2
Elass people pimpl {g;t_name (SEFing) s Ela:‘.s gender pimpl
void void void
person (); gender [} ;- # post_gender ()
1 void ki
age (short);-—————
void 1 1
L _?pﬂst_persun (}: flass short pimpl
r | short
L— @ post short ()
¥

The last step is the construction of the document parser and invocation of the complete parser on
our sample XML instance:

xml_schema::document_pimpl doc_p (people_p, "people™);

people_p.pre ();
doc_p.parse ("people.xml");

people_p.post_people ();

Let's considerxml_schema::document_pimpl in more detail. While the exact definition
of this class varies depending on the mapping configuration, here is the part relevant to our
example:

16 Embedded C++/Parser Mapping Getting Started Guide January 2011

3.4 Connecting the Parsers Together

namespace xml_schema
{
class document_pimpl
{
public:
document_pimpl (xml_schema::parser_baseg&,
const std::string& root_element_name);

document_pimpl (xml_schema::parser_baseg&,
const std::string& root_element_namespace,
const std::string& root_element_name);

void
parse (const std::string& file);

void
parse (std::istream&);

void
parse (const void* data, size_t size, bool last);
I3
}
xml_schema::document_pimpl is a root parser for the vocabulary. The first argument to

its constructors is the parser for the type of the root elenpeaiple _pimpl in our case).

Because a type parser is only concerned with the element’s content and not with the element’s
name, we need to specify the root element name somewhere. That's what is passed as the second
and third arguments to tldwcument_pimpl ’s constructors.

There are also three overloadearse() function defined in thelocument_pimpl class.

The first version parses a local file identified by a name. The second version reads the data from
an input stream. The last version allows you to parse the data directly from a buffer, one chunk at
a time. You can call this function multiple times with the final call havindasie argument set

to true. For more information on thkenl_schema::document_pimpl class refer tp Chapler

[7, "Document Parser and Error Handling".

Let's now consider a step-by-step list of actions that happen as we parse theoptghxml
The content opeople.xml is repeated below for convenience.

<?xml version="1.0"?>
<people>
<person>
<first-name>John</first-name>
<last-name>Doe</last-name>
<gender>male</gender>
<age>32</age>
</person>
<person>
<first-name>Jane</first-name>

January 2011 Embedded C++/Parser Mapping Getting Started Guide 17

4 Type Maps

<last-name>Doe</last-name>
<gender>female</gender>

<age>28</age>
</person>
</people>
1. people_p.pre() is called frommain() . We did not provide any implementation for
this callback so this call is a no-op.
2. doc_p.parse("people.xml") is called frommain() . The parser opens the file and

starts parsing its content.

3. The parser encounters the root elemdat_p verifies that the root element is correct and
calls _pre() on people_p which is also a no-op. Parsing is now delegated to
people p .

4. The parser encounters tiperson element.people_p determines thaperson_p is
responsible for parsing this elemermre() and _pre() callbacks are called on
person_p . Parsing is now delegatedpgerson_p .

5. The parser encounters thest-name elementperson_p determines thagtring_p
is responsible for parsing this elemepte() and pre() callbacks are called on
string_p . Parsing is now delegatedgtiing_p

6. The parser encounters character content consistinfgobin” . The _characters()
callback is called ostring_p

7. The parser encounters the end ofst-name element. The _post() and
post_string() callbacks are called ostring_p . Thefirst_name() callback is
called onperson_p with the return value opost_string() . Thefirst_name()
implementation print¥first: John" tocout . Parsing is now returned p@rson_p .

8. Steps analogous to 5-7 are performed fotasiename , gender , andage elements.

9. The parser encounters the encpefson element. The post() andpost_person()
callbacks are called goerson_p . Theperson() callback is called opeople p . The
person() implementation prints a new line toout . Parsing is now returned to
people p .

10. Steps 4-9 are performed for the sequerdon element.

11. The parser encounters the endpebple element. The post() callback is called on

people p . Thedoc_p.parse("people.xml”) call returns tamain() .
12. people_p.post_people() is called frommain() which is a no-op.
4 Type Maps

There are many useful things you can do inside parser callbacks as they are right now. There are,
however, times when you want to propagate some information from one parser to another or to
the caller of the parser. One common task that would greatly benefit from such a possibility is
building a tree-like in-memory object model of the data stored in XML. During execution, each
individual sub-parser would create a sub-tree and return it faist parser which can then

18 Embedded C++/Parser Mapping Getting Started Guide January 2011

4.1 Object Model

incorporate this sub-tree into the whole tree.

In this chapter we will discuss the mechanisms offered by the C++/Parser mapping for returning
information from individual parsers and see how to use them to build an object model of our
people vocabulary.

4.1 Object Model

An object model for our person record example could look like this (saved jpedpde.hxx
file):

#include <string>
#include <vector>

enum gender
male,
female

h

class person
{
public:
person (const std::string& first,
const std::string& last,
::gender gender,
short age)
- first_ (first), last_ (last),
gender_ (gender), age_ (age)
{
}

const std::string&
first () const

{

return first_;

}

const std::string&
last () const

{

return last_;

}

::gender
gender () const

{

return gender_;

}

January 2011 Embedded C++/Parser Mapping Getting Started Guide 19

4.1 Object Model

short
age () const

{

return age_;

}

private:

std::string first_;
std::string last_;
::gender gender_;
short age_;

%

typedef std::vector<person> people;

While it is clear which parser is responsible for which part of the object model, it is not exactly
clear how, for examplegender_pimpl will deliver gender to person_pimpl . You might

have noticed thadtring_pimpl manages to deliver its value to first_name() callback

of person_pimpl . Let's see how we can utilize the same mechanism to propagate our own
data.

There is a way to tell the XSD/e compiler that you want to exchange data between parsers. More
precisely, for each type defined in XML Schema, you can tell the compiler two things. First, the
return type of thepost *() callback in the parser skeleton generated for this type. And,
second, the argument type for callbacks corresponding to elements and attributes of this type. For
example, for XML Schema typgender we can specify the return type foost_gender()

in the gender_pskel skeleton and the argument type for tpender() callback in the
person_pskel skeleton. As you might have guessed, the generated code will then pass the
return value from thpost_*() callback as an argument to the element or attribute callback.

The way to tell the XSD/e compiler about these XML Schema to C++ mappings is with type map
files. Here is a simple type map for tpender type from the previous paragraph.

include "people.hxx";
gender ::gender ::gender;

The first line indicates that the generated code must ingadele.hxx in order to get the
definition for thegender type. The second line specifies that both argument and return types for
the gender XML Schema type should be thgender C++ enum (we use fully-qualified

C++ names to avoid name clashes). The next section will describe the type map format in detail.
We save this type map people.map and then translate our schemas with-thgpe-map

option to let the XSD/e compiler know about our type map:

20 Embedded C++/Parser Mapping Getting Started Guide January 2011

4.2 Type Map File Format

$ xsde cxx-parser --type-map people.map people.xsd

If we now look at the generat@eople-pskel.hxx , we will see the following changes in the
gender_pskel andperson_pskel skeletons:

#include "people.hxx"

class gender_pskel: public xml_schema::string_pskel

{

virtual ::gender
post_gender () = 0;

};...

class person_pskel: public xml_schema::parser_complex_content

{

virtual void
gender (::gender);

};...

Notice that#include "people.hxx" was added to the generated header file from the type
map to provide the definition for ttgender enum.

4.2 Type Map File Format

Type map files are used to define a mapping between XML Schema and C++ types. The compiler
uses this information to determine return typepast_*() callbacks in parser skeletons corre-
sponding to XML Schema types as well as argument types for callbacks corresponding to
elements and attributes of these types.

The compiler has a set of predefined mapping rules that map the built-in XML Schema types to
suitable C++ types (discussed below) and all other typesitb . By providing your own type
maps you can override these predefined rules. The format of the type map file is presented below:

namespace <schema-namespace> [<cxx-namespace>]
(include <file-name>;)*

([type] <schema-type> <cxx-ret-type> [<cxx-arg-type>];)*

}

Both <schema- nanespace> and <schenma-type> are regex patterns while
<CXX- namespace>, <CxXx-ret -t ype>, and<cxx- ar g- t ype> are regex pattern substitu-
tions. All names can be optionally enclosed in , for example, to include white-spaces.

January 2011 Embedded C++/Parser Mapping Getting Started Guide 21

4.2 Type Map File Format

<schenma- nanespace> determines XML Schema namespace. Optigigaix- nanespace>

is prefixed to every C++ type name in this namespace declarat@n.-r et -t ype> is a C++

type name that is used as a return type for st *() callback. Optional
<CcXxX-ar g-type> is an argument type for callbacks corresponding to elements and attributes
of this type. If <cxx-ar g-type> is not specified, it defaults tecxx-ret-type> if
<cxx-ret-type> ends with* or & (that is, it is a pointer or a reference) and
const <cxx-ret-type>& otherwise.<fil e- nane> is a file name either in the" or

<> format and is added with thénclude directive to the generated code.

The# character starts a comment that ends with a new line or end of file. To specify a name that
contains# enclose it i’ " . For example:

namespace http://www.example.com/xmins/my my

{

include "my.hxx";

Pass apples by value.
#

apple apple;

Pass oranges as pointers.
#
orange orange_t*

}

In the example above, for thattp://www.example.com/xmlns/my#orange XML
Schema type, they::orange_t* C++ type will be used as both return and argument types.

Several namespace declarations can be specified in a single file. The namespace declaration can
also be completely omitted to map types in a schema without a namespace. For instance:

include "my.hxx";
apple apple;

namespace http://www.example.com/xmins/my

{

orange "const orange_t*";

}

The compiler has a number of predefined mapping rules for the built-in XML Schema types
which can be presented as the following map files:

namespace http://www.w3.0rg/2001/XMLSchema
boolean bool bool;

byte "signed char" "signed char";
unsignedByte "unsigned char" "unsigned char";

22 Embedded C++/Parser Mapping Getting Started Guide January 2011

4.2 Type Map File Format

short short short;
unsignedShort "unsigned short

unsigned short";

int int int;
unsignedint "unsigned int

unsigned int";
long "long long" "long long";
unsignedLong "unsigned long long

unsigned long long";
integer long long;

negativelnteger long long;
nonPositivelnteger long long;
positivelnteger "unsigned long" "
nonNegativelnteger "unsigned long

unsigned long";
" "unsigned long";

float float float;
double double double;
decimal double double;

NMTOKENS xml_schema::string_sequence?;
IDREFS xml_schema::string_sequence®;

base64Binary xml_schema::buffer*;
hexBinary xml_schema::buffer*;

date xml_schema::date;

dateTime xml_schema::date_time;
duration xml_schema::duration;

gDay xml_schema::gday;

gMonth xml_schema::gmonth;
gMonthDay xml_schema::gmonth_day;
gYear xml_schema::gyear;

gYearMonth xml_schema::gyear_month;
time xml_schema::time;

}

If STL is enabled| (Section 5.1, "Standard Template Libfary"), the following mapping is used for
the string-based XML Schema built-in types:

namespace http://www.w3.0rg/2001/XMLSchema
{

include <string>;
anySimpleType std::string;
string std::string;

normalizedString std::string;
token std::string;

January 2011 Embedded C++/Parser Mapping Getting Started Guide 23

4.2 Type Map File Format

Name std::string;
NMTOKEN std::string;
NCName std::string;
ID std::string;

IDREF std::string;
language std::string;
anyURI std::string;

QName xml_schema::gname;

}
Otherwise, a C string-based mapping is used:

namespace http://www.w3.0rg/2001/XMLSchema

{
anySimpleType char*;

string char*;
normalizedString char*;
token char*;

Name char*;
NMTOKEN char*;
NCName char*;

ID char?;

IDREF char;

language char*;
anyURI char*;

QName xml_schema::gname*;

}

For more information about the mapping of the built-in XML Schema types to C++ types refer to
[Chapter 6, "Built-In XML Schema Type Pars¢rs”. The last predefined rule maps anything that
wasn’t mapped by previous rulesvioid :

namespace .*

{
.* void void;

}

When you provide your own type maps with thigpe-map option, they are evaluated first.

This allows you to selectively override any of the predefined rules. Note also that if you change
the mapping of a built-in XML Schema type then it becomes your responsibility to provide the
corresponding parser skeleton and implementation irxtleschema namespace. You can
include the custom definitions into the generated header file usinghtkie prologue-*

options.

24 Embedded C++/Parser Mapping Getting Started Guide January 2011

4.3 Parser Implementations

4.3 Parser Implementations

With the knowledge from the previous section, we can proceed with creating a type map that
maps types in thpeople.xsd schema to our object model classepaople.hxx . In fact,

we already have the beginning of our type map filedaple.map . Let's extend it with the rest

of the types:

include "people.hxx";

gender ::gender ::gender;
person ::person;
people ::people;

A few things to note about this type map. We did not provide the argument tygesrson

and people because the default constant reference is exactly what we need. We also did not
provide any mappings for built-in XML Schema typssng andshort because they are
handled by the predefined rules and we are happy with the result. Note also that all C++ types are
fully qualified. This is done to avoid potential name conflicts in the generated code. Now we can
recompile our schema and move on to implementing the parsers:

$ xsde cxx-parser --type-map people.map people.xsd

Here is the implementation of our three parsers in full. One way to save typing when implement-
ing your own parsers is to open the generated code and copy the signatures of parser callbacks
into your code. Or you could always auto generate the sample implementations and fill them with
your code.

#include "people-pskel.hxx"

class gender_pimpl: public gender_pskel

{
public:
gender_pimpl ()
: gender_pskel (&base_impl)
{
}

virtual ::gender
post_gender ()

{

return post_string () == "male" ? male : female;

}

private:
xml_schema::string_pimpl base_impl_;

g

class person_pimpl: public person_pskel

January 2011 Embedded C++/Parser Mapping Getting Started Guide 25

4.3 Parser Implementations

{
public:
virtual void
first_ name (const std::string& f)

{
first_ =f;

}

virtual void
last_name (const std::string&)

{

last =1,

}

virtual void
gender (::gender g)
{

gender_=g;

}

virtual void
age (short a)

age_=a;

}

virtual ::person
post_person ()

{
}

return ::person (first_, last_, gender_, age);

private:

std::string first_;
std::string last_;
::gender gender_;
short age_;

%

class people_pimpl: public people_pskel

{
public:
virtual void
person (const ::person& p)
{
people_.push_back (p);
}

virtual ::people
post_people ()
{

26 Embedded C++/Parser Mapping Getting Started Guide

January 2011

4.3 Parser Implementations

:peopler;

r.swap (people);
returnr;

}

private:
::people people_;

%

This code fragment should look familiar by now. Just note that aidee *() callbacks now
have return types insteadwadid . Here is the implementation of the test driver for this example:

#include <iostream>
using namespace std;

int
main (int argc, char* argv[])
{
/I Construct the parser.
1
xml_schema::short_pimpl short_p;
xml_schema::string_pimpl string_p;

gender_pimpl gender_p;
person_pimpl person_p;
people_pimpl people_p;

person_p.parsers (string_p, string_p, gender_p, short_p);
people_p.parsers (person_p);

/I Parse the document to obtain the object model.
1
xml_schema::document_pimpl doc_p (people_p, "people");

people_p.pre ();
doc_p.parse (argv[1]);
people ppl = people_p.post_people ();

/I Print the object model.

Il

for (people::iterator i (ppl.begin ()); i != ppl.end (); ++i)
{

cout << "first: " << i->first () << end|
<<"last: "<<i->last () << endl
<< "gender: " << (i->gender () == male ? "male" : "female") << end|
<<"age: "<<i->age () <<endl
<< endl;

January 2011 Embedded C++/Parser Mapping Getting Started Guide 27

5 Mapping Configuration

The parser creation and assembly part is exactly the same as in the previous chapter. The parsing
part is a bit differentpost_people() now has a return value which is the complete object
model. We store it in thppl variable. The last bit of the code simply iterates ovep#uple

vector and prints the information for each person. We save the last two code fragments to
driver.cxx and proceed to compile and test our new application:

$ c++ -l.../libxsde -c driver.cxx people-pskel.cxx

$ c++ -0 driver driver.o people-pskel.o .../libxsde/xsde/libxsde.a
$./driver people.xml

first: John

last: Doe

gender: male

age: 32

first: Jane
last: Doe
gender: female
age: 28

5 Mapping Configuration

The Embedded C++/Parser mapping has a number of configuration parameters that determine the
overall properties and behavior of the generated code, such as the use of Standard Template
Library (STL), Input/Output Stream Library (iostream), C++ exceptions, XML Schema valida-
tion, 64-bit integer types, parser implementation reuse styles, and support for XML Schema poly-
morphism. Previous chapters assumed that the use of STL, iostream, C++ exceptions, and XML
Schema validation were enabled. This chapter will discuss the changes in the Embedded
C++/Parser programming model that result from the changes to these configuration parameters. A
complete example that uses the minimal mapping configuration is presented at the end of this
chapter.

In order to enable or disable a particular feature, the corresponding configuration parameter
should be set accordingly in the XSD/e runtime library as well as specified during schema compi-
lation with the XSD/e command line options as described in the XSD/e Compiler Command Line

Manua).

While the XML documents can use various encodings, the Embedded C++/Parser mapping
always delivers character data to the application in the same encoding. The application encoding
can either be UTF-8 (default) or ISO-8859-1. To select a particular encoding, configure the
XSD/e runtime library accordingly and pass thehar-encoding option to the XSD/e
compiler when translating your schemas.

28 Embedded C++/Parser Mapping Getting Started Guide January 2011

http://www.codesynthesis.com/projects/xsde/documentation/xsde.xhtml
http://www.codesynthesis.com/projects/xsde/documentation/xsde.xhtml

5.1 Standard Template Library

When using 1SO-8859-1 as the application encoding, XML documents being parsed may contain
characters with Unicode values greater than OxFF which are unrepresentable in the ISO-8859-1
encoding. By default, in such situations parsing will terminate with an error. However, you can
suppress the error by providing a replacement character that should be used instead of unrepre-
sentable characters, for example:

xml_schema::iso8859_1::unrep_char ('?’);
To revert to the default behavior, set the replacement charadi@r to

The Embedded C++/Parser mapping includes built-in support for XML documents encoded in
UTF-8, UTF-16, 1SO-8859-1, and US-ASCII. Other encodings can be supported by providing
application-specific decoder functions.

5.1 Standard Template Library

To disable the use of STL you will need to configure the XSD/e runtime without support for STL
as well as pass theno-stl option to the XSD/e compiler when translating your schemas.
When STL is disabled, all string-based XML Schema types are mapped to Chsifle instead

of std::string , as described in Section 4.2, "Type Map File Format". The following code
fragment shows changes in the signaturefirst name() andlast_name() callbacks

from the person record example.

class person_pskel

{

public:
virtual void
first_name (char*);

virtual void
last_name (char*);

};...

Note that it is your responsibility to eventually release the memory associated with these strings
using operatodelete][]

5.2 Input/Output Stream Library

To disable the use of iostream you will need to configure the XSD/e runtime library without

support for iostream as well as pass -Hm®-iostream option to the XSD/e compiler when
translating your schemas. When iostream is disabled, the followingavee() functions in
thexml_schema::document_pimpl class become unavailable:

January 2011 Embedded C++/Parser Mapping Getting Started Guide 29

5.3 C++ Exceptions

void
parse (const std::string& file);

void
parse (std::istream&);

Leaving you with only one function in the form:

void
parse (const void* data, size_t size, bool last);

Seq Section 7.1, "Document Parker" for more information on the semantics of these functions.

5.3 C++ Exceptions

To disable the use of C++ exceptions, you will need to configure the XSD/e runtime without
support for exceptions as well as pass-the-exceptions option to the XSD/e compiler

when translating your schemas. When C++ exceptions are disabled, the error conditions are indi-
cated with error codes instead of exceptions, as descriped in Section 7.3, "Errof Codes".

5.4 XML Schema Validation

To disable support for XML Schema validation, you will need to configure the XSD/e runtime
accordingly as well as pass thesuppress-validation option to the XSD/e compiler
when translating your schemas. Disabling XML Schema validation allows to further increase the
parsing performance and reduce footprint in cases where XML instances are known to be valid.

5.5 64-bit Integer Type

By default the 64-bitong andunsignedLong XML Schema built-in types are mapped to the
64-bitlong long andunsigned long long fundamental C++ types. To disable the use

of these types in the mapping you will need to configure the XSD/e runtime accordingly as well
as pass the-no-long-long option to the XSD/e compiler when translating your schemas.
When the use of 64-bit integral C++ types is disabledldhg andunsignedLong XML
Schema built-in types are mappeddong andunsigned long fundamental C++ types.

5.6 Parser Reuse

When one type in XML Schema inherits from another, it is often desirable to be able to reuse the
parser implementation corresponding to the base type in the parser implementation corresponding
to the derived type. XSD/e provides support for two parser reuse styles: the sawalied
(generated when thereuse-style-mixin option is specified) andiein (generated by
default) styles.

30 Embedded C++/Parser Mapping Getting Started Guide January 2011

5.6 Parser Reuse

The compiler can also be instructed not to generate any support for parser reuse with the
--reuse-style-none option. This is mainly useful to further reduce the generated code size
when your vocabulary does not use inheritance or when you plan to implement each parser from
scratch. Note also that the XSD/e runtime should be configured in accordance with the parser
reuse style used in the generated code. The remainder of this section discusses the mixin and tiein
parser reuse styles in more detail.

To provide concrete examples for each reuse style we will use the following schema fragment:

<xs:complexType name="person">
<xs:sequence>
<xs:element name="first-name" type="xs:string"/>
<xs:.element name="last-name" type="xs:string"/>
<xs:element name="age" type="xs:short"/>
</xs:sequence>
</xs:complexType>

<xs:complexType name="emplyee">
<complexContent>
<extension base="person">
<xs:sequence>
<xs:element name="position" type="xs:string"/>
<xs:element name="salary" type="xs:unsignedLong"/>
</xs:sequence>
</extension>
</complexContent>
</xs:complexType>

The mixin parser reuse style uses the C++ mixin idiom that relies on multiple and virtual inheri-
tance. Because virtual inheritance can result in a significant object code size increase, this reuse
style should be considered when such an overhead is acceptable and/or the vocabulary consists of
only a handful of types. When the mixin reuse style is used, the generated parser skeletons use
virtual inheritance, for example:

class person_pskel: public virtual parser_complex_content

{
=

class employee_pskel: public virtual person_pskel

{
=

When you implement the base parser you also need to use virtual inheritance. The derived parser
is implemented by inheriting from both the derived parser skeleton and the base parser implemen-
tation (that ismixing in the base parser implementation), for example:

January 2011 Embedded C++/Parser Mapping Getting Started Guide 31

5.6 Parser Reuse

class person_pimpl: public virtual person_pskel

{
=

class employee_pimpl: public employee_pskel,
public person_pimpl
{

};...

The tiein parser reuse style uses delegation and normally results in a significantly smaller object
code while being almost as convenient to use as the mixin style. When the tiein reuse style is
used, the generated derived parser skeleton declares a constructor which allows you to specify the
implementation of the base parser:

class person_pskel: public parser_complex_content

{
=

class employee_pskel: public person_pskel

{
public:
employee_pskel (person_pskel* base_impl)

};...

If you pass the implementation of the base parser to this constructor then the generated code will
transparently forward all the callbacks corresponding to the base parser skeleton to this imple-
mentation. You can also pa@do this constructor in which case you will need to implement the
derived parser from scratch. The following example shows how we could implement the
person andemployee parsers using the tiein style:

class person_pimpl: public person_pskel

{
Vo

class employee_pimpl: public employee_pskel
{
public:
employee_pimpl ()
: employee_pskel (&base_impl)
{
}

32 Embedded C++/Parser Mapping Getting Started Guide January 2011

5.6 Parser Reuse

private:
person_pimpl base_impl_;

%

Note that you cannot use thied in base parser instanceage_impl_ in the above code) for
parsing anything except the derived type.

The ability to override the base parser callbacks in the derived parser is also available in the tiein
style. For example, the following code fragment shows how we can overridgd{je callback
if we didn’t like the implementation provided by the base parser:

class employee_pimpl: public employee_pskel
{
public:
employee_pimpl ()
: employee_pskel (&base_impl)
{
}

virtual void
age (short a)

{
=

private:
person_pimpl base_impl_;

%

In the above example thage element will be handled bgmplyee pimpl while the
first-name andlast-name callbacks will still go tdbase_impl_

It is also possible to inherit from the base parser implementation instead of declaring it as a
member variable. This can be useful if you need to access protected members in the base imple-
mentation or need to override a virtual function that is not part of the parser skeleton interface.
Note, however, that in this case you will need to resolve a number of ambiguities with explicit
qualifications or using-declarations. For example:

class person_pimpl: public person_pskel

{

protected:
virtual person*
create ()

{

return new person ();

January 2011 Embedded C++/Parser Mapping Getting Started Guide 33

5.7 Support for Polymorphism

}
h

class employee_pimpl: public employee_pskel,
public person_pimpl
{

public:
employee_pimpl ()
: employee_pskel (static_cast<person_pimpl*> (this))
{
}

/I Resolve ambiguities.
I
using emplyee_pskel::parsers;

protected:
virtual employee*
create ()

{

return new employee ();

}
h

5.7 Support for Polymorphism

By default the XSD/e compiler generates non-polymorphic code. If your vocabulary uses XML
Schema polymorphism in the form xdi:type and/or substitution groups, then you will need

to configure the XSD/e runtime with support for polymorphism, compile your schemas with the
--generate-polymorphic option to produce polymorphism-aware code, as well as pass
true as the last argument to thkenl_schema::document_pimpl 'S constructors. If some

of your schemas do not require support for polymorphism then you can compile them with the
--runtime-polymorphic option and still use the XSD/e runtime configured with polymor-
phism support.

When using the polymorphism-aware generated code, you can specify several parsers for a single
element by passing a parser map instead of an individual parser to the parser connection function
for the element. One of the parsers will then be looked up and used dependingstyihe

attribute value or an element name from a substitution group. Consider the following schema as
an example:

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
<xs:complexType name="person">

<xs:sequence>
<xs:element name="name" type="xs:string"/>

34 Embedded C++/Parser Mapping Getting Started Guide January 2011

5.7 Support for Polymorphism

</xs:sequence>
</xs:complexType>

<!-- substitution group root -->
<xs:element name="person" type="person"/>

<xs:complexType name="superman">
<xs:complexContent>
<xs:.extension base="person">
<xs:attribute name="can-fly" type="xs:boolean"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>

<xs:element name="superman"
type="superman"
substitutionGroup="person"/>

<xs:complexType name="batman">
<xs:complexContent>
<xs:.extension base="superman">
<xs:attribute name="wing-span" type="xs:unsignedInt"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>

<xs:.element name="batman"
type="batman"
substitutionGroup="superman"/>

<xs:complexType name="supermen">
<xs:sequence>
<xs:element ref="person" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<xs:.element name="supermen" type="supermen"/>

</xs:schema>

Conforming XML documents can use tlseiperman and batman types in place of the
person type either by specifying the type with thxsi:type attributes or by using the
elements from the substitution group, for instance:

<supermen xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<person>
<name>John Doe</name>

</person>

<superman can-fly="false">

January 2011 Embedded C++/Parser Mapping Getting Started Guide 35

5.7 Support for Polymorphism

<name>James "007" Bond</name>
</superman>

<superman can-fly="true" wing-span="10" xsi:type="batman">
<name>Bruce Wayne</name>
</superman>

</supermen>

To print the data stored in such XML documents we can implement the parsers as follows:

class person_pimpl: public person_pskel
{
public:

virtual void

pre ()

{

cout << "starting to parse person" << endl;

}

virtual void
name (const std::string& v)

{

cout << "name: " << v << endl;

}

virtual void
post_person ()
{
cout << "finished parsing person" << endl;
}
3

class superman_pimpl: public superman_pskel
{
public:
superman_pimpl ()
: superman_pskel (&base_impl)
{
}

virtual void
pre ()
{

cout << "starting to parse superman" << endl;

}

virtual void
can_fly (bool v)

{

cout << "can-fly: " << v << endl;

36 Embedded C++/Parser Mapping Getting Started Guide January 2011

}

virtual void
post_person ()

{

post_superman ();

}

virtual void
post_superman ()

{
}

cout << "finished parsing superman” << end|

private:
person_pimpl base_impl_;

%

class batman_pimpl: public batman_pskel

{
public:
batman_pimpl ()
: batman_pskel (&base_impl_)
{
}

virtual void
pre ()
{

cout << "starting to parse batman" << endl;

}

virtual void
wing_span (unsigned int v)

cout << "wing-span: " << v << endl;

}

virtual void
post_person ()

{

post_superman ();

}

virtual void
post_superman ()

{

post_batman ();

}

virtual void

January 2011 Embedded C++/Parser Mapping Getting Started Guide

5.7 Support for Polymorphism

37

5.7 Support for Polymorphism

post_batman ()

{

cout << "finished parsing batman" << endl;

}

private:
superman_pimpl base_impl_;

%

Note that because the derived type parssupgrman_pskel and batman_pskel) are
called via theperson_pskel interface, we have to override tip@st_person() virtual
function in superman_pimpl and batman_pimpl to call post_superman() and the
post_superman() virtual function inbatman_pimpl to callpost_batman() (when the
mixin parser reuse style is used it is not necessary to ovepadé person() in
batman_pimpl since the suitable implementation is inherited fguperman_pimpl).

The following code fragment shows how to connect the parsers together. Notice that for the
person element in thesupermen_p parser we specify a parser map instead of a specific
parser and we passie as the last argument to the document parser constructor to indicate that
we are parsing potentially-polymorphic XML documents:

int

main (int argc, char* argv[])

{
/I Construct the parser.
1
xml_schema::string_pimpl string_p;
xml_schema::boolean_pimpl boolean_p;
xml_schema::unsigned_int_pimpl unsigned_int_p;

person_pimpl person_p;
superman_pimpl superman_p;
batman_pimpl batman_p;

xml_schema::parser_map_impl person_map (5); // 5 hashtable buckets
supermen_pimpl supermen_p;

person_p.parsers (string_p);
superman_p.parsers (string_p, boolean_p);
batman_p.parsers (string_p, boolean_p, unsigned_int_p);

/I Here we are specifying several parsers that can be used to
/I parse the person element.

1

person_map.insert (person_p);

person_map.insert (superman_p);

person_map.insert (batman_p);

supermen_p.person_parser (person_map);

38 Embedded C++/Parser Mapping Getting Started Guide January 2011

5.7 Support for Polymorphism

/I Parse the XML document. The last argument to the document’s

/I constructor indicates that we are parsing polymorphic XML

/I documents.

I

xml_schema::document_pimpl doc_p (supermen_p, "supermen", true);

supermen_p.pre ();
doc_p.parse (argv[1]);
supermen_p.post_supermen ();

}

When polymorphism-aware code is generated, each elenfepgsser() function is over-
loaded to also accept an object of #mel_schema::parser_map type. For example, the
supermen_pskel class from the above example looks like this:

class supermen_pskel: public xml_schema::parser_complex_content

{
public:

/I Parser construction API.
I

void

parsers (person_pskel&);

/I Individual element parsers.

I

void

person_parser (person_pskel&);

void
person_parser (xml_schema::parser_map&);

};...

Note that you can specify both the individual (static) parser and the parser map. The individual
parser will be used when the static element type and the dynamic type of the object being parsed
are the same. This is the case, for example, when theress.type attribute and the element

hasn’'t been substituted. Because the individual parser for an element is cached and no map
lookup is necessary, it makes sense to specify both the individual parser and the parser map when
most of the objects being parsed are of the static type and optimal performance is important. The
following code fragment shows how to change the above example to set both the individual
parser and the parser map:

January 2011 Embedded C++/Parser Mapping Getting Started Guide 39

5.7 Support for Polymorphism

int
main (int argc, char* argv[])

{

/I Here we are specifying several parsers that can be used to
/I parse the person element.

I

person_map.insert (superman_p);

person_map.insert (batman_p);

supermen_p.person_parser (person_p);
supermen_p.person_parser (person_map);

}...

The xml_schema::parser_map interface and theml_schema::parser_map_impl

default implementation are presented below:

namespace xml_schema
{
class parser_map
{
public:
virtual parser_base*
find (const char* type) const = 0;

virtual void
reset () const = 0;
2
class parser_map_impl: public parser_map
{
public:

parser_map_impl (size_t buckets);

void
insert (parser_base&);

virtual parser_base*
find (const char* type) const;

virtual void
reset () const;

private:
parser_map_impl (const parser_map_impl&);

parser_map_impl&
operator= (const parser_map_impl&);

40 Embedded C++/Parser Mapping Getting Started Guide

January 2011

5.7 Support for Polymorphism

.
}

Thetype argument in théind() virtual function is the type name and namespace from the
xsi:type attribute (the namespace prefix is resolved to the actual XML namespace) or the type of
an element from the substitution group in the fGgmame> <namespace>" with the space

and the namespace part absent if the type does not have a namespace. You can obtain a parser’s
dynamic type in the same format using tlignamic_type() function. The static type can be
obtained by calling the staticstatic_type() function, for example

person_pskel::_static_type() . Both functions return a C stringgnst char*)

which is valid for as long as the application is running. f@set() virtual function is used to

reset the parsers contained in the map (as opposed to resetting or clearing the map itself). For
more information on parser resetting refef to Section 7.4, "Reusing Parsers after an Error". The
following example shows how we can implement our own parser mapsidingap

#include <map>
#include <string>

class parser_map: public xml_schema::parser_map
{
public:
void
insert (xml_schema::parser_base& p)
{
map_[p._dynamic_type ()] = &p;

virtual xml_schema::parser_base*

find (const char* type) const

{
map::const_iterator i = map_.find (type);
return i '=map_.end () ? i->second : 0;

}

virtual void
reset () const
{
for (map::const_iterator i (map_.begin (), e (map_.end ());
i1=e; ++i)
{
xml_schema::parser_base* p = i->second;
p->_reset ();
}
}

January 2011 Embedded C++/Parser Mapping Getting Started Guide 41

5.7 Support for Polymorphism

private:
typedef std::map<std::string, xml_schema::parser_base*> map;
map map_;

%

The XSD/e runtime provides the default implementation foxthe schema::parser_map

interface, xml_schema::parser_map_impl , Which is a hashmap. It requires that you
specify the number of buckets it will contain and it does not support automatic table resizing. To
obtain good performance the elements to buckets ratio should be between 0.7 and 0.9. It is also
recommended to use prime numbers for bucket counts: 53, 97, 193, 389, 769, 1543, 3079, 6151,
12289, 24593, 49157, 98317, 196613, 393241.

If C++ exceptions are disablgdd (Section 5.3, "C++ Excepfions"), the
xml_schema::parser_map_impl class has the following additional error querying API. It
can be used to detect the out of memory errors after calls patber _map_impl ’s construc-
tor andinsert() function.

namespace xml_schema

{

class parser_map_impl: public parser_map
public:
enum error

{

error_none,
error_no_memory

g

error
_error () const;

.
}

To support polymorphic parsing the XSD/e runtime and generated code maintain a number of
hashmaps that contain substitution and, if XML Schema validation is enabled (Section 5.4, "XML
[Schema Validation"), inheritance information. Because the number of elements in these
hashmaps depends on the schemas being compiled and thus is fairly static, these hashmaps do not
perform automatic table resizing and instead the number of buckets is specified when the XSD/e
runtime is configured. To obtain good performance the elements to buckets ratio in these
hashmaps should be between 0.7 and 0.9. The recommended way to ensure this range is to add
diagnostics code to your application as shown in the following example:

int
main ()

{

/I Check that the load in substitution and inheritance hashmaps

42 Embedded C++/Parser Mapping Getting Started Guide January 2011

5.8 Custom Allocators

/'is not too high.
1
#ifndef NDEBUG
float load = xml_schema::parser_smap_elements ();
load /= xml_schema::parser_smap_buckets ();

if (load > 0.8)
{

cerr << "substitution hashmap load is " << load << endl;
cerr << "time to increase XSDE_PARSER_SMAP_BUCKETS" << endl;

}

load = xml_schema::parser_imap_elements ();
load /= xml_schema::parser_imap_buckets ();

if (load > 0.8)
{

cerr << "inheritance hashmap load is " << load << end|;
cerr << "time to increase XSDE_PARSER_IMAP_BUCKETS" << endl;

}
#endif

}...

Most of the code presented in this section is taken fromdlygnorphism example which can

be found in theexamples/cxx/parser/ directory of the XSD/e distribution. Handling of
xsi:type and substitution groups when used on root elements requires a number of special
actions as shown in thmlyroot example.

5.8 Custom Allocators

By default the XSD/e runtime and generated code use the standard opsrat@isddelete

to manage dynamic memory. However, it is possible to instead use custom allocator functions
provided by your application. To achieve this, configure the XSD/e runtime library to use custom
allocator functions as well as pass theustom-allocator option to the XSD/e compiler

when translating your schemas. The signatures of the custom allocator functions that should be
provided by your application are listed below. Their semantics should be equivalent to the stan-
dard Cmalloc() , realloc() , andfree() functions.

extern "C" void*
xsde_alloc (size_t);

extern "C" void*
xsde_realloc (void*, size_t);

extern "C" void
xsde_free (void®);

January 2011 Embedded C++/Parser Mapping Getting Started Guide 43

5.8 Custom Allocators

Note also that when custom allocators are enabled, any dynamically-allocated object of which the
XSD/e runtime or generated code assume ownership should be allocated using the custom alloca-
tion function. Similarly, if your application assumes ownership of any dynamically-allocated
object returned by the XSD/e runtime or the generated code, then such an object should be
disposed of using the custom deallocation function. To help with these tasks the generated
xml_schema namespace defines the following two helper functions and, if C++ exceptions are
enabled, automatic pointer class:

namespace xml_schema

{
void*
alloc (size_t);

void
free (void®);

struct alloc_guard

{

alloc_guard (void*);
~alloc_guard ();

void*
get () const;

void

release ();

private:

2
}
If C++ exceptions are disabled, these functions are equivalentsde_alloc() and
xsde free() . If exceptions are enabled, xml_schema::alloc() throws
std::bad_alloc on memory allocation failure.

The following code fragment shows how to create and destroy a dynamically-allocated object
with custom allocators when C++ exceptions are disabled:

void* v = xml_schema::alloc (sizeof (type));
if (v==0)

// Handle out of memory condition.

}

type* x = new (v) type (1, 2);

44 Embedded C++/Parser Mapping Getting Started Guide January 2011

5.9 A Minimal Example

if (X)

{
x->~type ();
xml_schema::free (x);

}
The equivalent code fragment for configurations with C++ exceptions enabled is shown below:

xml_schema::alloc_guard g (xml_schema::alloc (sizeof (type)));

type* x = new (g.get () type (1, 2);
g.release ();

if (X)

{
x->~type ();
xml_schema::free (x);

}

5.9 A Minimal Example

The following example is a re-implementation of the person records example presented in
[Chapter 3, "Parser Skeletons". It is intended to work without STL, iostream, and C++ exceptions.
It can be found in thexamples/cxx/parser/minimal/ directory of the XSD/e distribu-

tion. The people.xsd schema is compiled with theno-stl , --no-iostream , and
--no-exceptions options. The following listing presents the implementation of parser skele-
tons and the test driver in full.

#include <stdio.h>
#include "people-pskel.hxx"

class gender_pimpl: public gender_pskel
{
public:
gender_pimpl ()
: gender_pskel (&base_impl)
{
}

virtual void

post_gender ()

{
char* s = post_string ();
printf ("gender: %s\n", s);
delete[] s;

}

January 2011 Embedded C++/Parser Mapping Getting Started Guide 45

5.9 A Minimal Example

private:
xml_schema::string_pimpl base_impl_;
3
class person_pimpl: public person_pskel
{
public:
virtual void
first_name (char* n)
{
printf ("first: %s\n", n);
delete[] n;
}
virtual void
last_name (char* n)
{
printf ("last: %s\n", n);
delete[] n;
}
virtual void
age (short a)
{
printf ("age: %hd\n", a);
}
3
class people_pimpl: public people_pskel
{
public:
virtual void
person ()
{
/I Add an extra newline after each person record.
1
printf ("\n");
}
3
int
main (int argc, char* argv[])
{
/I Construct the parser.
1

xml_schema::short_pimpl short_p;
xml_schema::string_pimpl string_p;

gender_pimpl gender_p;
person_pimpl person_p;

46 Embedded C++/Parser Mapping Getting Started Guide

January 2011

people_pimpl people_p;

person_p.parsers (string_p, string_p, gender_p, short_p);
people_p.parsers (person_p);

/I Open the file.
I
FILE* f = fopen (argv[1], "rb");

if (f==0)

{
fprintf (stderr, "%s: unable to open\n", argv[1]);
return 1,

}

/I Parse.

I

typedef xml_schema::parser_error error;
error e;

bool io_error = false;

do
{

xml_schema::document_pimpl doc_p (people_p, "people");
if (e = doc_p._error ()
break;

people_p.pre ();
if (e = people_p._error ()
break;

char buf[4096];
do

{
size_t s = fread (buf, 1, sizeof (buf), f);
if (s |= sizeof (buf) && ferror (f))

io_error = true;
break;

}

doc_p.parse (buf, s, feof (f) = 0);
e =doc_p._error ();

} while (le && !feof (f));

if (io_error ||)
break;

people_p.post_people ();

January 2011 Embedded C++/Parser Mapping Getting Started Guide

5.9 A Minimal Example

47

5.9 A Minimal Example

e = people_p._error ();
} while (false);
fclose (f);

// Handle errors.
1

if (io_error)

{
fprintf (stderr, "%s: read failure\n", argv[1]);
return 1,

}

if (e)
{
switch (e.type ()
{
case error::sys:
{
fprintf (stderr, "%s: %s\n", argv[1], e.sys_text ());
break;

}

case error::xml:
{
fprintf (stderr, "%s:%Ilu:%Ilu: %s\n",
argv[1], e.line (), e.column (), e.xml_text ());
break;

}

case error::schema:
{
fprintf (stderr, "%s:%Ilu:%Ilu: %s\n",
argv[1], e.line (), e.column (), e.schema_text ());
break;
}
case error::app:
{
fprintf (stderr, "%s:%Ilu:%lu: application error %d\n",
argv[1], e.line (), e.column (), e.app_code ());
break;
}
default:
break;

}

return 1,

}

return O;

}

48 Embedded C++/Parser Mapping Getting Started Guide

January 2011

6 Built-In XML Schema Type Parsers

6 Built-In XML Schema Type Parsers

The XSD/e runtime provides parser implementations for all built-in XML Schema types as
summarized in the following table. Declarations for these types are automatically included into
each generated header file. As a result you don’t need to include any headers to gain access to
these parser implementations.

Parser implementation in the

XML Schema type
xml_schema namespace

Parser return type

anyType and anySimpleType types

anyType any_type_ pimpl void

std::string or char*
[Section 5.1, "Standard Template Libraty"

anySimpleType any_simple_type_pimpl

fixed-length integral types

byte byte pimpl signed char
unsignedByte unsigned_byte pimpl unsigned char
short short_pimpl short
unsignedShort unsigned_short_pimpl unsigned short
int int_pimpl int
unsignedint unsigned_int_pimpl unsigned int

long long orlong

long long_pimpl [Section 5.5, "64-bit Integer Tyde"
unsigned long long or
unsignedLong unsigned_long_pimpl unsigned long

[Section 5.5, "64-bit Integer Tygde"

arbitrary-length integral types

integer integer_pimpl long
nonPositivelnteger non_positive_integer_pimpl long
nonNegativelnteger non_negative_integer_pimpl unsigned long
positivelnteger positive_integer_pimpl unsigned long
negativelnteger negative_integer_pimpl long

boolean types

boolean boolean_pimpl bool

fixed-precision floating-point types

January 2011 Embedded C++/Parser Mapping Getting Started Guide 49

6 Built-ln XML Schema Type Parsers

float float_pimpl float
double double_pimpl double
arbitrary-precision floating-point types
decimal decimal_pimpl double
string-based types
string string_pimpl std::string or char*

[Section 5.1, "Standard Template Libra

normalizedString

normalized_string_pimpl

std::string or char*

[Section 5.1, "Standard Template Libra
token token pimol std::string or char*
—Pimp [Section 5.1, "Standard Template Libr
Name name pimol std::string or char*
—Pimp [Section 5.1, "Standard Template Libra
. std::string or char*
NMTOKEN nmtoken_pimpl [Section 5.1, "Standard Template Libra
. std::string or char*
NCName ncname_pimpl [Section 5.1, "Standard Template Libra
lanauage lanauage bimol std::string or char*
guag guage_pimp [Section 5.1, "Standard Template Libra
qualified name
xml_schema::.gname or
QName gname_pimpl xml_schema::gname*
[Section 6.1, ONameParsef"
ID/IDREF types
D id oimpl std::string or char*
—pimp [Section 5.1, "Standard Template Libra
. . std::string or char*
IDREF idref_pimpl [Section 5.1, "Standard Template Libra
list types
xml_schema::string_sequence*
NMTOKENS nmtokens_pimpl [Section 6.2, NMTOKENSNdIDREFS]
[Parserg”
xml_schema::string_sequence*
IDREFS idrefs_pimpl [Section 6.2, NMTOKENSNndIDREFS]
[Parserg"
URI types
50 Embedded C++/Parser Mapping Getting Started Guide January 2011

6.1 QName Parser

anyURI

uri_pimpl

std::string or char*
[Section 5.1, "Standard Template Libra

binary types

base64Binary

base64_binary_pimpl

xml_schema::buffer*
[Section 6.3,Base64Binary and|
[hexBinary Parserg"

xml_schema::buffer*

hexBinary hex_binary_pimpl [Section 6.3,Base64Binary and|
[hexBinary Parsers"
date/time types
date date pimol xml_schema::date
—Pimp [Section 6.5, date Parsef
. . . xml_schema::date_time
dateTime date_time_pimpl [Section 6.6, dateTime Parser'
duration duration_pimpl xml_schema:duration
-Pimp [Section 6.7, duration Parsed’
. xml_schema::gday
gbay gday_pimpl [Section 6.8, gDay Parser"
. xml_schema::gmonth
gMonth gmonth_pimpl [Section 6.9, dMonth Parsed’
. xml_schema::gmonth_day
gMonthDay gmonth_day_pimpl [Section 6.10,dMonthDay Parsef"
Year ear pimol xml_schema::gyear
9 gyear_pimp [Section 6.11,dYear Parsef"
. xml_schema::gyear_month
g¥earMonth gyear_month_pimpl| [Section 6.12,dYearMonth Parser"
. . . xml_schema::time
time time_pimpl —

[Section 6.13,ttme Parsel"

6.1 QNameParser

The return type of thgname_pimpl

parser implementation is eitheml_schema::gname

when STL is enabled (Section 5.1, "Standard Template LilpraryYmbrschema::qname*

when STL is disabled. Thgname class represents an XML qualified name. When the return
, the returned object is dynamically allocated with operator
. With STL enabled, thgname

type is xml_schema::gname*
new and should eventually be deallocated with opemddtate

type has the following interface:

January 2011

Embedded C++/Parser Mapping Getting Started Guide 51

6.1 QName Parser

namespace xml_schema

{

class gname
{
public:
/I The default constructor creates an uninitialized object.
/I Use modifiers to initialize it.
1
gname ();

explicit
gname (const std::string& name);
gname (const std::string& prefix, const std::string& name);

void
swap (gnameg&);

const std::string&
prefix () const;

std::string&
prefix ();

void
prefix (const std::string&);

const std::string&
name () const;

std::string&
name ();

void
name (const std::string&);

I3

bool
operator== (const gnameg&, const gnameg&);

bool
operator!= (const gnameé&, const gnameg&);

}

When STL is disabled and C++ exceptions are enabled (Section 5.3, "C++ Excgptions"), the
gname type has the following interface:

namespace xml_schema

{

class gname

{
public:

52 Embedded C++/Parser Mapping Getting Started Guide January 2011

6.1 QName Parser

/I The default constructor creates an uninitialized object.
/I Use modifiers to initialize it.

1

gname ();

explicit
gname (char* name);
gname (char* prefix, char* name);

void
swap (gnameg&);

private:
gname (const gnameg&);

gnameé&
operator= (const gnameg&);

public:
char*
prefix ();

const char*
prefix () const;

void
prefix (char*);

void
prefix_copy (const char*);

char*
prefix_detach ();

public:
char*
name ();

const char*
name () const;

void
name (char*);

void
name_copy (const char*);

char*
name_detach ();

January 2011 Embedded C++/Parser Mapping Getting Started Guide 53

6.1 QName Parser

bool
operator== (const gnameg&, const gnameg&);

bool
operator!= (const gnameé&, const gnameg&);

}

The modifier functions and constructors that havecttee* argument assume ownership of the
passed strings which should be allocated with opersgar char[] and will be deallocated
with operatordelete][] by thegname object. If you detach the underlying prefix or name
strings, then they should eventually be deallocated with opetaliete|]

Finally, if both STL and C++ exceptions are disabled,ghame type has the following inter-
face:

namespace xml_schema

{

class gname
public:

enum error
error_none,
error_no_memory

g

/I The default constructor creates an uninitialized object.
/I Use modifiers to initialize it.

1

gname ();

explicit
gname (char* name);
gname (char* prefix, char* name);

void
swap (gnameg&);

private:
gname (const gnameg&);

gnameé&
operator= (const gnameg&);

public:
char*
prefix ();

const char*
prefix () const;

54 Embedded C++/Parser Mapping Getting Started Guide January 2011

6.2 NMTOKENS and IDREFS Parsers

void
prefix (char*);

error
prefix_copy (const char*);

char*
prefix_detach ();

public:
char*
name ();

const char*
name () const;

void
name (char*);

error
name_copy (const char*);

char*
name_detach ();

h

bool
operator== (const gnameg&, const gnameg&);

bool

operator!= (const gnameg&, const gnameg&);

}

6.2NMTOKENS&Nd IDREFS Parsers

The return type of themtokens_pimpl and idrefs_pimpl parser implementations is
xml_schema::string_sequence* . The returned object is dynamically allocated with

operatornew and should eventually be deallocated with operdédete . With STL and C++
exceptions enabledl (Section 5.1, "Standard Template Libtary", Section 5.3, "C++ Exceptions"),
thestring_sequence type has the following interface:

namespace xml_schema

{

class string_sequence

{

public:
typedef std::string value_type;
typedef std::string* pointer;

January 2011 Embedded C++/Parser Mapping Getting Started Guide 55

6.2 NMTOKENS and IDREFS Parsers

typedef const std::string* const_pointer;
typedef std::string& reference;
typedef const std::string& const_reference;

typedef size t size_type;
typedef ptrdiff_t difference_type;

typedef std::string* iterator;
typedef const std::string* const_iterator;

public:
string_sequence ();

void
swap (string_sequenceg&);

private:
string_sequence (string_sequenceg&);

string_sequence&
operator= (string_sequenceg&);

public:
iterator
begin ();

const_iterator
begin () const;

iterator
end ();

const_iterator
end () const;

std::string&
front ();

const std::string&
front () const;

std::string&
back ();

const std::string&
back () const;

std::string&
operator[] (size_t);

const std::string&

56

Embedded C++/Parser Mapping Getting Started Guide

January 2011

}

When STL is enabled and C++ exceptions are disabled, the signaturespokthdack()

p

p

h
b

operator[] (size_t) const;

ublic:
bool
empty () const;

size t
size () const;

size t
capacity () const;

size t
max_size () const;

ublic:
void
clear ();

void
pop_back ();

iterator
erase (iterator);

void

push_back (const std::string&);

iterator

insert (iterator, const std::string&);

void
reserve (size_t);

ool

operator== (const string_sequence&, const string_sequence&);

b

ool

operator!= (const string_sequence&, const string_sequenceg&);

insert()

, andreserve()

namespace xml_schema

{

class string_sequence

{
public:

enum error

January 2011

functions change as follows:

Embedded C++/Parser Mapping Getting Started Guide

6.2 NMTOKENS and IDREFS Parsers

57

6.2 NMTOKENS and IDREFS Parsers

}

When STL is disabled and C++ exceptions are enabledtriimg_sequence

{

error_none,
error_no_memory

g

public:
error
push_back (const std::string&);

error
insert (iterator, const std::string&);

error
insert (iterator, const std::string&, iterator& result);

error
reserve (size_t);

h

following interface:

namespace xml_schema

{

class string_sequence
{
public:
typedef char* value_type;

typedef char** pointer;

typedef const char** const_pointer;
typedef char* reference;

typedef const char* const_reference;

typedef size t size_type;
typedef ptrdiff t difference_type;

typedef char** iterator;
typedef const char* const* const_iterator;

string_sequence ();

void
swap (string_sequenceg&);

private:
string_sequence (string_sequenceg&);

string_sequence&

58 Embedded C++/Parser Mapping Getting Started Guide

type has the

January 2011

operator= (string_sequenceg&);

public:
iterator
begin ();

const_iterator
begin () const;

iterator
end ();

const_iterator
end () const;

char*
front ();

const char*
front () const;

char*
back ();

const char*
back () const;

char*
operator[] (size_t);

const char*
operator[] (size_t) const;

public:
bool
empty () const;

size t
size () const;

size t
capacity () const;

size t
max_size () const;

public:
void
clear ();

void

January 2011

Embedded C++/Parser Mapping Getting Started Guide

6.2 NMTOKENS and IDREFS Parsers

59

6.2 NMTOKENS and IDREFS Parsers

pop_back ();

iterator
erase (iterator);

void
push_back (char*);

void
push_back copy (const char*);

iterator
insert (iterator, char®);

void
reserve (size_t);

/I Detach a string from the sequence at a given position.
/I The string pointer at this position in the sequence is

/l set to O.

i

char*

detach (iterator);

h

bool
operator== (const string_sequence&, const string_sequence&);

bool
operator!= (const string_sequence&, const string_sequenceg&);

}

The push_back() andinsert() functions assume ownership of the passed string which
should be allocated with operatorew char] and will be deallocated with operator
delete[] by thestring_sequence object. These two functions free the passed object if
the reallocation of the underlying sequence buffer fails. gimgh_back_copy() function

makes a copy of the passed string. If you detach the underlying element string, then it should
eventually be deallocated with operatietete[]

When both STL and C++ exceptions are disabled, the signatures qfusiie back() |,
push_back _copy() ,insert() ,andreserve() functions change as follows:

namespace xml_schema

{

class string_sequence

public:
enum error

{

error_none,

60 Embedded C++/Parser Mapping Getting Started Guide January 2011

6.3 base64Binary and hexBinary Parsers

error_no_memory

g

public:
error
push_back (char*);

error
push_back copy (const char*);

error
insert (iterator, char®);

error
insert (iterator, char*, iterator& result);

error
reserve (size_t);
I3
}

6.3base64Binary andhexBinary Parsers

The return type of thbase64_binary_pimpl andhex_binary_pimpl parser implemen-
tations isxml_schema::buffer* . The returned object is dynamically allocated with operator
new and should eventually be deallocated with operdgtete . With C++ exceptions enabled
(Section 5.3, "C++ Exceptions"), thaffer type has the following interface:

namespace xml_schema

class buffer
{
public:
class bounds {}; // Out of bounds exception.

public:
buffer ();

explicit

buffer (size_t size);

buffer (size_t size, size_t capacity);

buffer (const void* data, size_t size);

buffer (const void* data, size_t size, size_t capacity);

enum ownership_value { assume_ownership };

/I This constructor assumes ownership of the memory passed.
I

January 2011 Embedded C++/Parser Mapping Getting Started Guide 61

6.3 base64Binary and hexBinary Parsers

buffer (void* data, size_t size, size_t capacity, ownership_value);

private:
buffer (const buffer&);

buffer&
operator= (const buffer&);

public:
void
attach (void* data, size_t size, size_t capacity);

void*
detach ();

void
swap (buffer&);

public:
size t
capacity () const;

bool
capacity (size_t);

public:
size t
size () const;

bool
size (size_t);

public:
const char*
data () const;

char*
data ();

const char*
begin () const;

char*
begin ();

const char*
end () const;

char*
end ();

62 Embedded C++/Parser Mapping Getting Started Guide January 2011

6.3 base64Binary and hexBinary Parsers

bool
operator== (const buffer&, const buffer&);

bool
operator!= (const buffer&, const buffer&);

}

The last constructor and thgtach() member function make thmuffer instance assume the
ownership of the memory block pointed to by ttega argument and eventually release it by
calling operator delete() . Thedetach() member function detaches and returns the
underlying memory block which should eventually be released by cabiperator
delete()

The capacity() andsize() modifier functions returrirue if the underlying buffer has
moved. Thebounds exception is thrown if the constructor attach() member function
arguments violate th@@ize <= capacity) constraint.

If C++ exceptions are disabled, theffer type has the following interface:
namespace xml_schema

class buffer

public:
enum error

{

error_none,
error_bounds,
error_no_memory

%
buffer ();

private:
buffer (const buffer&);

buffer&
operator= (const buffer&);

public:
error
attach (void* data, size_t size, size_t capacity);

void*
detach ();

void
swap (buffer&);

January 2011 Embedded C++/Parser Mapping Getting Started Guide 63

6.3 base64Binary and hexBinary Parsers

public:

size t
capacity () const;

error
capacity (size_t);

error
capacity (size_t, bool& moved);

public:

size t
size () const;

error
size (size_t);

error
size (size_t, bool& moved);

public:

h

const char*
data () const;

char*
data ();

const char*
begin () const;

char*
begin ();

const char*
end () const;

char*
end ();

bool

operator== (const buffer&, const buffer&);

bool

operator!= (const buffer&, const buffer&);

64

Embedded C++/Parser Mapping Getting Started Guide

January 2011

6.4 Time Zone Representation

6.4 Time Zone Representation

The date , dateTime , gDay, gMonth, gMonthDay , gYear , gYearMonth , and time
XML Schema built-in types all include an optional time zone component. The following
xml_schema::time_zone base class is used to represent this information:

namespace xml_schema

{

class time_zone

{
public:
time_zone ();
time_zone (short hours, short minutes);

bool
zone_present () const;

void
zone_reset ();

short
zone_hours () const;

void
zone_hours (short);

short
zone_minutes () const;

void
zone_minutes (short);

3

bool
operator== (const time_zoneg&, const time_zone&);

bool
operator!= (const time_zone&, const time_zoneg&);

}

The zone_present() accessor function returrtsue if the time zone is specified. The
zone_reset() modifier function resets the time zone object tonbespecified state. If the

time zone offset is negative then both hours and minutes components are represented as negative
integers.

January 2011 Embedded C++/Parser Mapping Getting Started Guide 65

6.5 date Parser

6.5date Parser

The return type of thelate_pimpl parser implementation eml_schema::date which
represents a year, a day, and a month with an optional time zone. Its interface is presented below.
For more information on the basenl_schema::time_zone class refer tq_Section 6.4,
['Time Zone Representatign”.

namespace xml_schema

{

class date: public time_zone
{
public:
/I The default constructor creates an uninitialized object.
/I Use modifiers to initialize it.
1
date ();

date (int year, unsigned short month, unsigned short day);

date (int year, unsigned short month, unsigned short day,
short zone_hours, short zone_minutes);

int

year () const;

void
year (int);

unsigned short
month () const;

void
month (unsigned short);

unsigned short
day () const;

void
day (unsigned short);
I3

bool
operator== (const date&, const date&);

bool
operator!= (const date&, const date&);

66 Embedded C++/Parser Mapping Getting Started Guide January 2011

6.6 dateTime Parser

6.6dateTime Parser

The return type of thdate_time_pimpl parser implementation is

xml_schema::date_time which represents a year, a month, a day, hours, minutes, and
seconds with an optional time zone. Its interface is presented below. For more information on the
basexml_schema::time_zone class refer tp Section 6.4, "Time Zone Representation".

namespace xml_schema
{
class date_time: public time_zone
{
public:
/I The default constructor creates an uninitialized object.
/I Use madifiers to initialize it.
1
date_time ();

date_time (int year, unsigned short month, unsigned short day,
unsigned short hours, unsigned short minutes,
double seconds);

date_time (int year, unsigned short month, unsigned short day,
unsigned short hours, unsigned short minutes,
double seconds, short zone_hours, short zone_minutes);

int
year () const;

void
year (int);

unsigned short
month () const;

void
month (unsigned short);

unsigned short
day () const;

void
day (unsigned short);

unsigned short
hours () const;

void
hours (unsigned short);

unsigned short

January 2011 Embedded C++/Parser Mapping Getting Started Guide 67

6.7 duration Parser

minutes () const;

void
minutes (unsigned short);

double
seconds () const;

void
seconds (double);

h

bool
operator== (const date_time&, const date_time&);

bool
operator!= (const date_time&, const date_time&);

6.7duration Parser

The return type of théuration_pimpl parser implementation ml_schema::dura-
tion which represents a potentially negative duration in the form of years, months, days, hours,
minutes, and seconds. Its interface is presented below.

namespace xml_schema

{

class duration
{
public:
/I The default constructor creates an uninitialized object.
/I Use modifiers to initialize it.
I
duration ();

duration (bool negative,
unsigned int years, unsigned int months, unsigned int days,
unsigned int hours, unsigned int minutes, double seconds);

bool
negative () const;

void
negative (bool);

unsigned int
years () const;

void
years (unsigned int);

68 Embedded C++/Parser Mapping Getting Started Guide January 2011

6.8 gDay Parser

unsigned int
months () const;

void
months (unsigned int);

unsigned int
days () const;

void
days (unsigned int);

unsigned int
hours () const;

void
hours (unsigned int);

unsigned int
minutes () const;

void
minutes (unsigned int);

double
seconds () const;

void
seconds (double);

h

bool
operator== (const duration&, const duration&);

bool
operator!= (const duration&, const duration&);

6.8gDay Parser

The return type of thgday_pimpl parser implementation eml_schema::gday which
represents a day of the month with an optional time zone. Its interface is presented below. For
more information on the basenl_schema::time_zone class refer tp Section 6.4, "Time
[Zone Representatign”.

namespace xml_schema

{

class gday: public time_zone

{

January 2011 Embedded C++/Parser Mapping Getting Started Guide 69

6.9 gMonth Parser

public:
/I The default constructor creates an uninitialized object.
/I Use modifiers to initialize it.
1

gday ();

explicit
gday (unsigned short day);

gday (unsigned short day, short zone_hours, short zone_minutes);

unsigned short
day () const;

void
day (unsigned short);
I3

bool
operator== (const gday&, const gday&);

bool
operator!= (const gday&, const gday&);

6.9gMonth Parser

The return type of thgmonth_pimpl parser implementation isml_schema::gmonth
which represents a month of the year with an optional time zone. Its interface is presented below.

For more information on the basenl_schema::time_zone class refer tg Section 6.4,
['Time Zone Representatign”.

namespace xml_schema

{

class gmonth: public time_zone

{
public:
/I The default constructor creates an uninitialized object.
/I Use modifiers to initialize it.
I
gmonth ();

explicit
gmonth (unsigned short month);

gmonth (unsigned short month,
short zone_hours, short zone_minutes);

unsigned short
month () const;

70 Embedded C++/Parser Mapping Getting Started Guide January 2011

6.10 gMonthDay Parser

void
month (unsigned short);

I3

bool
operator== (const gmonth&, const gmonth&);

bool
operator!= (const gmonthé&, const gmonth&);

6.10gMonthDay Parser

The return type of thgmonth_day _pimpl parser implementation is

xml_schema::gmonth_day which represents a day and a month of the year with an optional
time zone. Its interface is presented below. For more information on the base
xml_schema::time_zone class refer tp Section 6.4, "Time Zone Representation”.

namespace xml_schema

{

class gmonth_day: public time_zone

{

public:
/I The default constructor creates an uninitialized object.
/I Use modifiers to initialize it.
I
gmonth_day ();
gmonth_day (unsigned short month, unsigned short day);
gmonth_day (unsigned short month, unsigned short day,

short zone_hours, short zone_minutes);

unsigned short
month () const;
void
month (unsigned short);
unsigned short
day () const;
void
day (unsigned short);

%

bool

operator== (const gmonth_day&, const gmonth_day&);

January 2011 Embedded C++/Parser Mapping Getting Started Guide 71

6.11 gYear Parser

bool
operator!= (const gmonth_day&, const gmonth_day&);

}

6.11gYear Parser

The return type of thgyear_pimpl parser implementation isnl_schema::gyear which
represents a year with an optional time zone. Its interface is presented below. For more informa-
tion on the basgml_schema::time_zone class refer tp Section 6.4, "Time Zone Reprgsen-

tation’].

namespace xml_schema

{

class gyear: public time_zone

{

public:
/I The default constructor creates an uninitialized object.
/I Use modifiers to initialize it.
1

gyear ();

explicit
gyear (int year);

gyear (int year, short zone_hours, short zone_minutes);
int

year () const;

void

year (int);
h

bool
operator== (const gyear&, const gyear&);

bool
operator!= (const gyear&, const gyear&);

}

6.12gYearMonth Parser

The return type of the gyear_month_pimpl parser implementation is
xml_schema::gyear_month which represents a year and a month with an optional time
zone. Its interface is presented below. For more information on the base
xml_schema::time_zone class refer tp Section 6.4, "Time Zone Representation”.

72 Embedded C++/Parser Mapping Getting Started Guide January 2011

6.13 time Parser

namespace xml_schema

{

class gyear_month: public time_zone

{
public:
/I The default constructor creates an uninitialized object.
/I Use modifiers to initialize it.
1
gyear_month ();

gyear_month (int year, unsigned short month);

gyear_month (int year, unsigned short month,
short zone_hours, short zone_minutes);

int
year () const;

void
year (int);

unsigned short
month () const;

void
month (unsigned short);

h

bool
operator== (const gyear_month&, const gyear_month&);

bool
operator!= (const gyear_month&, const gyear_month&);

6.13time Parser

The return type of théime_pimpl parser implementation eml_schema::time which
represents hours, minutes, and seconds with an optional time zone. Its interface is presented
below. For more information on the bas®l_schema::time_zone class refer th _Sectipn

[6.4, "Time Zone Representatipn”.

namespace xml_schema

{

class time: public time_zone

{

public:
/I The default constructor creates an uninitialized object.
/I Use modifiers to initialize it.
1

January 2011 Embedded C++/Parser Mapping Getting Started Guide 73

7 Document Parser and Error Handling

time ();
time (unsigned short hours, unsigned short minutes, double seconds);

time (unsigned short hours, unsigned short minutes, double seconds,
short zone_hours, short zone_minutes);

unsigned short
hours () const;

void
hours (unsigned short);

unsigned short
minutes () const;

void
minutes (unsigned short);

double
seconds () const;

void
seconds (double);

h

bool
operator== (const time&, const time&);

bool
operator!= (const time&, const time&);

7 Document Parser and Error Handling

In this chapter we will discuss tlxenl_schema::document_pimpl type, the error handling
mechanisms provided by the mapping, as well as how to reuse a parser after an error has
occurred.

There are four categories of errors that can result from running a parser on an XML instance:
system, xml, schema, and application. The system category contains memory allocation and
file/stream operation errors. The xml category is for XML parsing and well-formedness checking
errors. Similarly, the schema category is for XML Schema validation errors. Finally, the applica-
tion category is for application logic errors that you may want to propagate from parser imple-
mentations to the caller of the parser.

74 Embedded C++/Parser Mapping Getting Started Guide January 2011

7.1 Document Parser

The C++/Parser mapping supports two methods of reporting errors: using C++ exceptions and
with error codes. The method used depends on whether or not you have configured the XSD/e
runtime and the generated code with C++ exceptions enabled, as desgribed in Section 5.3, "C++

Exceptions".

7.1 Document Parser

The xml_schema::document_pimpl parser is a root parser for the vocabulary. As
mentioned i} Section 3.4, "Connecting the Parsers Toggther", its interface varies depending on
the mapping configuration (Chapter 5, "Mapping Configuration"). When STL and the iostream
library are enabled, theml_schema::document_pimpl class has the following interface:

namespace xml_schema

{

class parser_base;

class document_pimpl
{
public:
document_pimpl (parser_base&,
const char* root_element_name);

document_pimpl (parser_base&,
const char* root_element_namespace,
const char* root_element_name);

document_pimpl (parser_base&,
const std::string& root_element_name);

document_pimpl (parser_base&,
const std::string& root_element_namespace,
const std::string& root_element_name);

public:
/I Parse a local file. The file is accessed with std::ifstream
/l'in binary mode. The std::ios_base::failure exception is used
/I to report io errors (badbit and failbit) if exceptions are
/I enabled. Otherwise error codes are used.
1
void
parse (const char* file);

void
parse (const std::string& file);

/I Parse std::istream. std::ios_base::failure exception is used

/I to report io errors (badbit and failbit) if exceptions are
/I enabled. Otherwise error codes are used.

January 2011 Embedded C++/Parser Mapping Getting Started Guide 75

7.1 Document Parser

i
void
parse (std::istream&);

/I Parse a chunk of input. You can call this function multiple
/I times with the last call having the last argument true.

1

void

parse (const void* data, size_t size, bool last);

/I Low-level Expat-specific parsing API.
1

void

parse_begin (XML_Parser);

void
parse_end ();
I3
}

When the use of STL is disabled, the constructors andp#mse() function that use
std::string in their signatures are not available. When the use of iostream is disabled, the
parse() functions that parse a local file asidl::istream are not available.

When support for XML Schema polymorphism is enabled, the overlodmament_pimpl
constructors have additional arguments which control polymorphic parsing. For more information
refer td Section 5.7, "Support for Polymorphism".

The first argument to all overloaded constructors is the parser for the type of the root element.
The parser_base class is the base type for all parser skeletons. The second and third argu-
ments to thelocument_pimpl ’s constructors are the root element’s name and namespace.

The parse_begin() and parse_end() functions present a low-level, Expat-specific
parsing API for maximum control. A typical use case would look like this (pseudo-code):

XxX_pimpl root_p;
document_pimpl doc_p (root_p, "root");

root_p.pre ();
doc_p.parse_begin (xml_parser);

while (more_stuff to_parse)

{
/I Call XML_Parse or XML_ParseBuffer:

I
if (XML_Parse (...) I= XML_STATUS_ERROR)
break;

76 Embedded C++/Parser Mapping Getting Started Guide January 2011

7.2 Exceptions

}

doc_p.parse_end ();
result_type result (root_p.post_xxx ());

Note that if your vocabulary use XML namespaces XNd_ParserCreateNS() functions
should be used to create the XML parser. Spabdl(Char (')) should be used as a sepa-
rator (the second argument ¥KML_ParserCreateNS()). Furthermore, if XML_Parse or
XML_ParseBuffer fail, calparse_end() to determine the error which is indicated either via
exception or set as an error code.

The error handling mechanisms employed by dbeument_pimpl parser are described in
[Section 7.2, "Exceptions" ahd Section 7.3, "Error Cqdes".

7.2 Exceptions

When C++ exceptions are used for error reporting, the system errors are mapped to the standard
exceptions. The out of memory condition is indicated by throwing an instance of
std::bad_alloc . The stream operation errors are reported by throwing an instance of
std::ios_base::failure

The xml and schema errors are reported by throwingciie schema::parser_xml and
xml_schema::parser_schema exceptions, respectively. These two exceptions derive from
xml_schema::parser_exception which, in turn, derives fromatd::exception .Asa
result, you can handle any error from these two categories by either catthiegcep-

tion , xml_schema::parser_exception , or individual exceptions. The further down the
hierarchy you go the more detailed error information is available to you. The following listing
shows the definitions of these exceptions:

namespace xml_schema

{

class parser_exception: public std::exception

{

public:
unsigned long
line () const;

unsigned long
column () const;

virtual const char*
text () const = 0;

};...

std::ostreamé&

January 2011 Embedded C++/Parser Mapping Getting Started Guide 77

7.2 Exceptions

operator<< (std::ostreamé&, const parser_exception&);

typedef <implementation-details> parser_xml_error;

class parser_xml: public parser_exception
public:

parser_xml_error

code () const;

virtual const char*
text () const;

virtual const char*
what () const throw ();

typedef <implementation-details> parser_schema_error;

class parser_schema: public parser_exception
public:

parser_schema_error

code () const;

virtual const char*
text () const;

virtual const char*
what () const throw ();

I3

}

The parser_xml_error and parser_schema_error are implementation-specific error
code types. Theperator<< defined for theparser_exception class simply prints the

error description as returned by tiest() function. The following example shows how we can
catch these exceptions:

int
main (int argc, char* argv[])
{

try

{
/I Parse argv[1].

78 Embedded C++/Parser Mapping Getting Started Guide January 2011

7.3 Error Codes

}

catch (const xml_schema::parser_exception& e)

{
cout << argv[l] << "" << e.line () << ™" << e.column ()
<< " error; " << e.text () << endl;
return 1,

}
}

Finally, for reporting application errors from parsing callbacks, you can throw any exceptions of
your choice. They are propagated to the caller of the parser without any alterations.

7.3 Error Codes

When C++ exceptions are not available, error codes are used to report error conditions. Each
parser skeleton and the raticument_pimpl parser have the following member function for
guerying the error status:

xml_schema::parser_error
_error () const;

To handle all possible error conditions, you will need to obtain the error status after calls to: the
document_pimpl ’s constructor (it performs memory allocations which may fail), the root
parserpre() callback, each call to thearse() function, and, finally, the call to the root
parser post_*() callback. The definition ofxml_schema::parser_error class is
presented below:

namespace xml_schema

{

class sys_error
public:
enum value
none,
no_memory,
open_failed,
read_failed,
write_failed

h
sys_error (value);
operator value () const;

static const char*
text (value);

January 2011 Embedded C++/Parser Mapping Getting Started Guide 79

7.3

Error Codes

};...

typedef <implementation-details> parser_xml_error;
typedef <implementation-details> parser_schema_error;

c

{
P

80

lass parser_error

ublic:
enum error_type
{
none,
Sys,
xml,
schema,
app
3

error_type
type () const;

/I Line and column are only available for xml, schema, and

/I app errors.
i

unsigned long
line () const;

unsigned long
column () const;

/I Returns true if there is an error so that you can write
Il if (p.error () or if (error e = p.error ().

1

typedef void (error::*bool_convertible) ();
operator bool_convertible () const;

/I system
i
sys_error

sys_code () const;

const char*
sys_text () const;

Il xml
1
parser_xml_error

xml_code () const;

const char*
xml_text () const;

Embedded C++/Parser Mapping Getting Started Guide

January 2011

7.3 Error Codes

/I schema

i
parser_schema_error
schema_code () const;

const char*
schema_text () const;

I/l app

1

int

app_code () const;

.
}

The parser_xml_error and parser_schema_error are implementation-specific error

code types. Theparser_error class incorporates four categories of errors which you can
query by calling theype() function. The following example shows how to handle error condi-
tions with error codes. It is based on the person record example presgnted in Chapter 3, "Parser

int
main (int argc, char* argv[])
{
/I Construct the parser.
1
xml_schema::short_pimpl short_p;
xml_schema::string_pimpl string_p;

gender_pimpl gender_p;
person_pimpl person_p;
people_pimpl people_p;

person_p.parsers (string_p, string_p, gender_p, short_p);
people_p.parsers (person_p);

/I Parse.

1

using xml_schema::parser_error;
parser_error e;

do
{

xml_schema::document_pimpl doc_p (people_p, "people");
if (e = doc_p._error ())
break;

January 2011 Embedded C++/Parser Mapping Getting Started Guide 81

7.3 Error Codes

people_p.pre ();
if (e = people_p._error ()
break;

doc_p.parse (argv[1]);

if (e = doc_p._error ()
break;

people_p.post_people ();
e = people_p._error ();

} while (false);

// Handle errors.

1
if (e)
{
switch (e.type ()
{
case parser_error::sys:
{
cerr << argv[1] << ": error: " << e.sys_text () << endl;
break;
}
case parser_error::xml:
{
cerr << argv[1] << ™" << e.line () << ™" << e.column ()
<< " error: " << e.xml_text () << endl;
break;
}
case parser_error::schema:
{
cerr << argv[1] << ™" << e.line () << ™" << e.column ()
<< " error: " << e.schema_text () << endl;
break;
}
case parser_error::app:
{
cerr << argv[l] << ™" << e.line () << ™" << e.column ()
<< ": application error " << e.app_code () << endl;
break;
}
}
return 1,
}
}

The error type for application errorsirg with the valued indicated the absence of error. You
can set the application error by calling thepp_error() function inside a parser callback.
For example, if it was invalid to have a person younger than 18 in our people catalog, then we

82 Embedded C++/Parser Mapping Getting Started Guide January 2011

7.4 Reusing Parsers after an Error

could have implemented this check as follows:

class person_pimpl: public person_pskel

{

public:
virtual void
age (short a)

if (a < 18)
_app_error (1);
}

};...

You can also set a system error by calling_tegs_error() function inside a parser callback.
This function has one argument of tygml_schema::sys_error which was presented
above. For example:

class person_pimpl: public person_pskel

{

public:
virtual void
pre ()
{

p_ = new person ();

if (p_==0)
_Sys_error (xml_schema::sys_error::no_memory);

}

private:
person* p_;

%

7.4 Reusing Parsers after an Error

After a successful execution a parser returns into the initial state and can be used to parse another
document without any extra actions. On the other hand, if an error occurred during parsing and
you would like to reuse the parser to parse another document, you need to explicitly reset it into
the initial state as shown in the following code fragment:

int

main ()

{

January 2011 Embedded C++/Parser Mapping Getting Started Guide 83

7.4 Reusing Parsers after an Error

std::vector<std::string> files = ...
xml_schema::document_pimpl doc_p (people_p, "people");

for (size_ti=0; i< files.size (); ++i)
{
try
{
people_p.pre ();
doc_p.parse (files]i]);
people_p.post_people ();
}

catch (const xml_schema::parser_exception&)

{

doc_p.reset ();

}
}
}

If you do not need to reuse parsers after an error for example because your application terminates
or you create a new parser instance in such situations, then you can avoid generating parser reset
code by specifying thesuppress-reset XSD/e compiler option.

Your individual parser implementations may also require extra actions in order to bring them into
a usable state after an error. To accomplish this you can overrideetie#() virtual function

as shown below. Notice that when you override tleset() function in your implementation,

you should always call the base skeleton version to allow it to reset its state:

class person_pimpl: public person_pskel
{
public:
virtual void
pre ()
{
p_ = new person ();

}

virtual void

_reset ()

{
person_pskel::_reset ();
delete p_;
p_=0;

}

private:
person* p_;

%

84 Embedded C++/Parser Mapping Getting Started Guide January 2011

Note also that thereset() = mechanism is used only when an error has occurred. To make sure
that your parser implementations arrive at the initial state during successful execution, use the

Appendix A — Supported XML Schema Constructs

initialization (pre() and_pre()) and finalization fjost_*()

Appendix A — Supported XML Schema Constructs

The Embedded C++/Parser mapping supports validation of the following W3C XML Schema

constructs in the generated code.

and_post()) callbacks.

Construct

Notes

Structure

element

attribute

any

anyAttribute

all

sequence

choice

complex type, empty content

complex type, mixed content

complex type, simple content extensior

complex type, simple content restrictior

complex type, complex content extensi

complex type, complex content restricti

list

Facets
length String-based types.
minLength String-based types.
maxLength String-based types.
pattern String-based types.

January 2011 Embedded C++/Parser Mapping Getting Started Guide

85

Appendix A — Supported XML Schema Constructs

whiteSpace

String-based types.

enumeration

String-based types.

minExclusive

Integer and floating-point types.

minlnclusive

Integer and floating-point types.

maxExclusive

Integer and floating-point types.

maxInclusive

Integer and floating-point types.

Datatypes

byte

unsignedByte

short

unsignedShort

int

unsignedint

long

unsignedLong

integer

nonPositivelnteger

nonNegativelnteger

positivelnteger

negativelnteger

boolean

float

double

decimal

string

normalizedString

token

86 Embedded C++/Parser Mapping Getting Started Guide

January 2011

Appendix A — Supported XML Schema Constructs

Name

NMTOKEN

NCName

language

anyURI

ID

Identity constraint is not enforce

IDREF

Identity constraint is not enforce

NMTOKENS

IDREFS

Identity constraint is not enforce

QName

base64Binary

hexBinary

date

dateTime

duration

gDay

gMonth

gMonthDay

gYear

gYearMonth

time

January 2011

Embedded C++/Parser Mapping Getting Started Guide

d.
d.

d.

87

	Preface
	About This Document
	More Information

	1 Introduction
	1.1 Mapping Overview
	1.2 Benefits

	2 Hello World Example
	2.1 Writing XML Document and Schema
	2.2 Translating Schema to C++
	2.3 Implementing Application Logic
	2.4 Compiling and Running

	3 Parser Skeletons
	3.1 Implementing the Gender Parser
	3.2 Implementing the Person Parser
	3.3 Implementing the People Parser
	3.4 Connecting the Parsers Together

	4 Type Maps
	4.1 Object Model
	4.2 Type Map File Format
	4.3 Parser Implementations

	5 Mapping Configuration
	5.1 Standard Template Library
	5.2 Input/Output Stream Library
	5.3 C++ Exceptions
	5.4 XML Schema Validation
	5.5 64-bit Integer Type
	5.6 Parser Reuse
	5.7 Support for Polymorphism
	5.8 Custom Allocators
	5.9 A Minimal Example

	6 Built-In XML Schema Type Parsers
	6.1 QName Parser
	6.2 NMTOKENS and IDREFS Parsers
	6.3 base64Binary and hexBinary Parsers
	6.4 Time Zone Representation
	6.5 date Parser
	6.6 dateTime Parser
	6.7 duration Parser
	6.8 gDay Parser
	6.9 gMonth Parser
	6.10 gMonthDay Parser
	6.11 gYear Parser
	6.12 gYearMonth Parser
	6.13 time Parser

	7 Document Parser and Error Handling
	7.1 Document Parser
	7.2 Exceptions
	7.3 Error Codes
	7.4 Reusing Parsers after an Error

	Appendix A ž Supported XML Schema Constructs

