
C++/Parser Mapping

Getting Started Guide

Copyright © 2005-2023 Code Synthesis.

Permission is granted to copy, distribute and/or modify this document under the terms of the

GNU Free Documentation License, version 1.2; with no Invariant Sections, no Front-Cover Texts

and no Back-Cover Texts.

This document is available in the following formats: XHTML, PDF, and PostScript.

https://www.codesynthesis.com/licenses/fdl-1.2.txt
https://www.codesynthesis.com/projects/xsd/documentation/xsd.xhtml
https://cppget.org/xsd-examples
https://www.codesynthesis.com/mailman/listinfo/xsd-users

Table of Contents

................... 1Preface

............... 1About This Document

................ 1More Information

.................. 11 Introduction

.............. 11.1 Mapping Overview

................. 21.2 Benefits

............... 32 Hello World Example

.......... 32.1 Writing XML Document and Schema

............. 42.2 Translating Schema to C++

........... 62.3 Implementing Application Logic

............. 82.4 Compiling and Running

................. 83 Parser Skeletons

............ 93.1 Implementing the Gender Parser

............ 123.2 Implementing the Person Parser

............ 133.3 Implementing the People Parser

........... 143.4 Connecting the Parsers Together

.................. 184 Type Maps

................ 184.1 Object Model

.............. 214.2 Type Map File Format

............. 244.3 Parser Implementations

............... 275 Mapping Configuration

................ 275.1 C++ Standard

............ 285.2 Character Type and Encoding

............. 285.3 Underlying XML Parser

............. 285.4 XML Schema Validation

............. 295.5 Support for Polymorphism

............ 356 Built-In XML Schema Type Parsers

................ 386.1 QName Parser

........... 396.2 NMTOKENS and IDREFS Parsers

......... 396.3 base64Binary and hexBinary Parsers

............. 416.4 Time Zone Representation

................ 426.5 date Parser

............... 436.6 dateTime Parser

............... 446.7 duration Parser

................ 456.8 gDay Parser

............... 466.9 gMonth Parser

.............. 476.10 gMonthDay Parser

............... 476.11 gYear Parser

.............. 486.12 gYearMonth Parser

................ 496.13 time Parser

iSeptember 2023 C++/Parser Mapping Getting Started Guide

Table of Contents

............. 507 Document Parser and Error Handling

............. 507.1 Xerces-C++ Document Parser

............... 557.2 Expat Document Parser

................ 597.3 Error Handling

.......... 63Appendix A — Supported XML Schema Constructs

September 2023ii C++/Parser Mapping Getting Started Guide

Table of Contents

Preface

About This Document

The goal of this document is to provide you with an understanding of the C++/Parser program

ming model and allow you to efficiently evaluate XSD against your project’s technical require

ments. As such, this document is intended for C++ developers and software architects who are

looking for an XML processing solution. Prior experience with XML and C++ is required to

understand this document. Basic understanding of XML Schema is advantageous but not

expected or required.

More Information

Beyond this guide, you may also find the following sources of information useful:

XSD Compiler Command Line Manual

The cxx/parser/ directory in the xsd-examples package contains a collection of exam

ples and a README file with an overview of each example.

The README file in the xsd-examples package explains how to build the examples.

The xsd-users mailing list is the place to ask technical questions about XSD and the

C++/Parser mapping. Furthermore, the archives may already have answers to some of your

questions.

1 Introduction

Welcome to CodeSynthesis XSD and the C++/Parser mapping. XSD is a cross-platform W3C

XML Schema to C++ data binding compiler. C++/Parser is a W3C XML Schema to C++

mapping that represents an XML vocabulary as a set of parser skeletons which you can imple

ment to perform XML processing as required by your application logic.

1.1 Mapping Overview

The C++/Parser mapping provides event-driven, stream-oriented XML parsing, XML Schema

validation, and C++ data binding. It was specifically designed and optimized for high perfor

mance and small footprint. Based on the static analysis of the schemas, XSD generates compact,

highly-optimized hierarchical state machines that combine data extraction, validation, and even

dispatching in a single step. As a result, the generated code is typically 2-10 times faster than

general-purpose validating XML parsers while maintaining the lowest static and dynamic

memory footprints.

1September 2023 C++/Parser Mapping Getting Started Guide

Preface

https://www.codesynthesis.com/projects/xsd/documentation/xsd.xhtml
https://cppget.org/xsd-examples
https://cppget.org/xsd-examples
https://www.codesynthesis.com/mailman/listinfo/xsd-users
https://www.codesynthesis.com/pipermail/xsd-users/

To speed up application development, the C++/Parser mapping can be instructed to generate

sample parser implementations and a test driver which can then be filled with the application

logic code. The mapping also provides a wide range of mechanisms for controlling and customiz

ing the generated code.

The next chapter shows how to create a simple application that uses the C++/Parser mapping to

parse, validate, and extract data from a simple XML document. The following chapters show how

to use the C++/Parser mapping in more detail.

1.2 Benefits

Traditional XML access APIs such as Document Object Model (DOM) or Simple API for XML

(SAX) have a number of drawbacks that make them less suitable for creating robust and main

tainable XML processing applications. These drawbacks include:

Generic representation of XML in terms of elements, attributes, and text forces an applica

tion developer to write a substantial amount of bridging code that identifies and transforms

pieces of information encoded in XML to a representation more suitable for consumption by

the application logic.

String-based flow control defers error detection to runtime. It also reduces code readability

and maintainability.

Lack of type safety because the data is represented as text.

Resulting applications are hard to debug, change, and maintain.

In contrast, statically-typed, vocabulary-specific parser skeletons produced by the C++/Parser

mapping allow you to operate in your domain terms instead of the generic elements, attributes,

and text. Static typing helps catch errors at compile-time rather than at run-time. Automatic code

generation frees you for more interesting tasks (such as doing something useful with the informa

tion stored in the XML documents) and minimizes the effort needed to adapt your applications to

changes in the document structure. To summarize, the C++/Parser mapping has the following key

advantages over generic XML access APIs:

Ease of use. The generated code hides all the complexity associated with recreating the

document structure, maintaining the dispatch state, and converting the data from the text

representation to data types suitable for manipulation by the application logic. Parser skele

tons also provide a convenient mechanism for building custom in-memory representations.

Natural representation. The generated parser skeletons implement parser callbacks as

virtual functions with names corresponding to elements and attributes in XML. As a result,

you process the XML data using your domain vocabulary instead of generic elements,

attributes, and text.

Concise code. With a separate parser skeleton for each XML Schema type, the application

implementation is simpler and thus easier to read and understand.

Safety. The XML data is delivered to parser callbacks as statically typed objects. The parser

September 20232 C++/Parser Mapping Getting Started Guide

1.2 Benefits

callbacks themselves are virtual functions. This helps catch programming errors at

compile-time rather than at runtime.

Maintainability. Automatic code generation minimizes the effort needed to adapt the appli

cation to changes in the document structure. With static typing, the C++ compiler can

pin-point the places in the application code that need to be changed.

Efficiency. The generated parser skeletons combine data extraction, validation, and even

dispatching in a single step. This makes them much more efficient than traditional architec

tures with separate stages for validation and data extraction/dispatch.

2 Hello World Example

In this chapter we will examine how to parse a very simple XML document using the

XSD-generated C++/Parser skeletons. The code presented in this chapter is based on the hello
example which can be found in the cxx/parser/ directory in the xsd-examples package.

2.1 Writing XML Document and Schema

First, we need to get an idea about the structure of the XML documents we are going to process.

Our hello.xml, for example, could look like this:

<?xml version="1.0"?>
<hello>

 <greeting>Hello</greeting>

 <name>sun</name>
 <name>moon</name>
 <name>world</name>

</hello>

Then we can write a description of the above XML in the XML Schema language and save it into

hello.xsd:

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:complexType name="hello">
 <xs:sequence>
 <xs:element name="greeting" type="xs:string"/>
 <xs:element name="name" type="xs:string" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

3September 2023 C++/Parser Mapping Getting Started Guide

2 Hello World Example

https://cppget.org/xsd-examples

 <xs:element name="hello" type="hello"/>

</xs:schema>

Even if you are not familiar with XML Schema, it should be easy to connect declarations in

hello.xsd to elements in hello.xml. The hello type is defined as a sequence of the

nested greeting and name elements. Note that the term sequence in XML Schema means that

elements should appear in a particular order as opposed to appearing multiple times. The name
element has its maxOccurs property set to unbounded which means it can appear multiple

times in an XML document. Finally, the globally-defined hello element prescribes the root

element for our vocabulary. For an easily-approachable introduction to XML Schema refer to

XML Schema Part 0: Primer.

The above schema is a specification of our XML vocabulary; it tells everybody what valid docu

ments of our XML-based language should look like. The next step is to compile this schema to

generate the object model and parsing functions.

2.2 Translating Schema to C++

Now we are ready to translate our hello.xsd to C++ parser skeletons. To do this we invoke

the XSD compiler from a terminal (UNIX) or a command prompt (Windows):

$ xsd cxx-parser --xml-parser expat hello.xsd

The --xml-parser option indicates that we want to use Expat as the underlying XML parser

(see Section 5.3, "Underlying XML Parser"). The XSD compiler produces two C++ files:

hello-pskel.hxx and hello-pskel.cxx. The following code fragment is taken from

hello-pskel.hxx; it should give you an idea about what gets generated:

class hello_pskel
{
public:
 // Parser callbacks. Override them in your implementation.
 //
 virtual void
 pre ();

 virtual void
 greeting (const std::string&);

 virtual void
 name (const std::string&);

 virtual void
 post_hello ();

September 20234 C++/Parser Mapping Getting Started Guide

2.2 Translating Schema to C++

http://www.w3.org/TR/xmlschema-0/

 // Parser construction API.
 //
 void
 greeting_parser (xml_schema::string_pskel&);

 void
 name_parser (xml_schema::string_pskel&);

 void
 parsers (xml_schema::string_pskel& /* greeting */,
 xml_schema::string_pskel& /* name */);

private:
 ...
};

The first four member functions shown above are called parser callbacks. You would normally

override them in your implementation of the parser to do something useful. Let’s go through all

of them one by one.

The pre() function is an initialization callback. It is called when a new element of type hello
is about to be parsed. You would normally use this function to allocate a new instance of the

resulting type or clear accumulators that are used to gather information during parsing. The

default implementation of this function does nothing.

The post_hello() function is a finalization callback. Its name is constructed by adding the

parser skeleton name to the post_ prefix. The finalization callback is called when parsing of the

element is complete and the result, if any, should be returned. Note that in our case the return type

of post_hello() is void which means there is nothing to return. More on parser return types

later.

You may be wondering why the finalization callback is called post_hello() instead of

post() just like pre(). The reason for this is that finalization callbacks can have different

return types and result in function signature clashes across inheritance hierarchies. To prevent this

the signatures of finalization callbacks are made unique by adding the type name to their names.

The greeting() and name() functions are called when the greeting and name elements

have been parsed, respectively. Their arguments are of type std::string and contain the data

extracted from XML.

The last three functions are for connecting parsers to each other. For example, there is a prede

fined parser for built-in XML Schema type string in the XSD runtime. We will be using it to

parse the contents of greeting and name elements, as shown in the next section.

5September 2023 C++/Parser Mapping Getting Started Guide

2.2 Translating Schema to C++

2.3 Implementing Application Logic

At this point we have all the parts we need to do something useful with the information stored in

our XML document. The first step is to implement the parser:

#include <iostream>
#include "hello-pskel.hxx"

class hello_pimpl: public hello_pskel
{
public:
 virtual void
 greeting (const std::string& g)
 {
 greeting_ = g;
 }

 virtual void
 name (const std::string& n)
 {
 std::cout << greeting_ << ", " << n << "!" << std::endl;
 }

private:
 std::string greeting_;
};

We left both pre() and post_hello() with the default implementations; we don’t have

anything to initialize or return. The rest is pretty straightforward: we store the greeting in a

member variable and later, when parsing names, use it to say hello.

An observant reader my ask what happens if the name element comes before greeting? Don’t

we need to make sure greeting_ was initialized and report an error otherwise? The answer is

no, we don’t have to do any of this. The hello_pskel parser skeleton performs validation of

XML according to the schema from which it was generated. As a result, it will check the order of

the greeting and name elements and report an error if it is violated.

Now it is time to put this parser implementation to work:

using namespace std;

int
main (int argc, char* argv[])
{
 try
 {
 // Construct the parser.
 //

September 20236 C++/Parser Mapping Getting Started Guide

2.3 Implementing Application Logic

 xml_schema::string_pimpl string_p;
 hello_pimpl hello_p;

 hello_p.greeting_parser (string_p);
 hello_p.name_parser (string_p);

 // Parse the XML instance.
 //
 xml_schema::document doc_p (hello_p, "hello");

 hello_p.pre ();
 doc_p.parse (argv[1]);
 hello_p.post_hello ();
 }
 catch (const xml_schema::exception& e)
 {
 cerr << e << endl;
 return 1;
 }
}

The first part of this code snippet instantiates individual parsers and assembles them into a

complete vocabulary parser. xml_schema::string_pimpl is an implementation of a parser

for built-in XML Schema type string. It is provided by the XSD runtime along with parsers for

other built-in types (for more information on the built-in parsers see Chapter 6, "Built-In XML

Schema Type Parsers"). We use string_pimpl to parse the greeting and name elements

as indicated by the calls to greeting_parser() and name_parser().

Then we instantiate a document parser (doc_p). The first argument to its constructor is the

parser for the root element (hello_p in our case). The second argument is the root element

name.

The final piece is the calls to pre(), parse(), and post_hello(). The call to parse()
perform the actual XML parsing while the calls to pre() and post_hello() make sure that

the parser for the root element can perform proper initialization and cleanup.

While our parser implementation and test driver are pretty small and easy to write by hand, for

bigger XML vocabularies it can be a substantial effort. To help with this task XSD can automati

cally generate sample parser implementations and a test driver from your schemas. You can

request the generation of a sample implementation with empty function bodies by specifying the

--generate-noop-impl option. Or you can generate a sample implementation that prints

the data store in XML by using the --generate-print-impl option. To request the genera

tion of a test driver you can use the --generate-test-driver option. For more informa

tion on these options refer to the XSD Compiler Command Line Manual. The ’generated’
example in the xsd-examples package shows the sample implementation generation feature in

action.

7September 2023 C++/Parser Mapping Getting Started Guide

2.3 Implementing Application Logic

https://www.codesynthesis.com/projects/xsd/documentation/xsd.xhtml
https://cppget.org/xsd-examples

2.4 Compiling and Running

After saving all the parts from the previous section in driver.cxx, we are ready to compile

our first application and run it on the test XML document. On a UNIX system this can be done

with the following commands:

$ c++ -std=c++11 -I.../libxsd -c driver.cxx hello-pskel.cxx
$ c++ -std=c++11 -o driver driver.o hello-pskel.o -lexpat
$./driver hello.xml
Hello, sun!
Hello, moon!
Hello, world!

Here .../libxsd represents the path to the libxsd package root directory. We can also test the

error handling. To test XML well-formedness checking, we can try to parse

hello-pskel.hxx:

$./driver hello-pskel.hxx
hello-pskel.hxx:1:0: not well-formed (invalid token)

We can also try to parse a valid XML but not from our vocabulary, for example hello.xsd:

$./driver hello.xsd
hello.xsd:2:0: expected element ’hello’ instead of
’http://www.w3.org/2001/XMLSchema#schema’

3 Parser Skeletons

As we have seen in the previous chapter, the XSD compiler generates a parser skeleton class for

each type defined in XML Schema. In this chapter we will take a closer look at different func

tions that comprise a parser skeleton as well as the way to connect our implementations of these

parser skeletons to create a complete parser.

In this and subsequent chapters we will use the following schema that describes a collection of

person records. We save it in people.xsd:

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:simpleType name="gender">
 <xs:restriction base="xs:string">
 <xs:enumeration value="male"/>
 <xs:enumeration value="female"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:complexType name="person">

September 20238 C++/Parser Mapping Getting Started Guide

3 Parser Skeletons

https://cppget.org/libxsd

 <xs:sequence>
 <xs:element name="first-name" type="xs:string"/>
 <xs:element name="last-name" type="xs:string"/>
 <xs:element name="gender" type="gender"/>
 <xs:element name="age" type="xs:short"/>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="people">
 <xs:sequence>
 <xs:element name="person" type="person" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

 <xs:element name="people" type="people"/>

</xs:schema>

A sample XML instance to go along with this schema is saved in people.xml:

<?xml version="1.0"?>
<people>
 <person>
 <first-name>John</first-name>
 <last-name>Doe</last-name>
 <gender>male</gender>
 <age>32</age>
 </person>
 <person>
 <first-name>Jane</first-name>
 <last-name>Doe</last-name>
 <gender>female</gender>
 <age>28</age>
 </person>
</people>

Compiling people.xsd with the XSD compiler results in three parser skeletons being gener

ated: gender_pskel, person_pskel, and people_pskel. We are going to examine and

implement each of them in the subsequent sections.

3.1 Implementing the Gender Parser

The generated gender_pskel parser skeleton looks like this:

class gender_pskel: public virtual xml_schema::string_pskel
{
public:
 // Parser callbacks. Override them in your implementation.
 //

9September 2023 C++/Parser Mapping Getting Started Guide

3.1 Implementing the Gender Parser

 virtual void
 pre ();

 virtual void
 post_gender ();
};

Notice that gender_pskel inherits from xml_schema::string_skel which is a parser

skeleton for built-in XML Schema type string and is predefined in the XSD runtime library.

This is an example of the general rule that parser skeletons follow: if a type in XML Schema

inherits from another then there will be an equivalent inheritance between the corresponding

parser skeleton classes.

The pre() and post_gender() callbacks should look familiar from the previous chapter.

Let’s now implement the parser. Our implementation will simply print the gender to cout:

class gender_pimpl: public gender_pskel,
 public xml_schema::string_pimpl
{
public:
 virtual void
 post_gender ()
 {
 std::string s = post_string ();
 cout << "gender: " << s << endl;
 }
};

While the code is quite short, there is a lot going on. First, notice that we are inheriting from

gender_pskel and from xml_schema::string_pimpl. We’ve encountered

xml_schema::string_pimpl already; it is an implementation of the

xml_schema::string_pskel parser skeleton for built-in XML Schema type string.

This is another common theme in the C++/Parser programming model: reusing implementations

of the base parsers in the derived ones with the C++ mixin idiom. In our case, string_pimpl
will do all the dirty work of extracting the data and we can just get it at the end with the call to

post_string().

In case you are curious, here is what xml_schema::string_pskel and

xml_schema::string_pimpl look like:

namespace xml_schema
{
 class string_pskel: public simple_content
 {
 public:
 virtual std::string
 post_string () = 0;

September 202310 C++/Parser Mapping Getting Started Guide

3.1 Implementing the Gender Parser

 };

 class string_pimpl: public virtual string_pskel
 {
 public:
 virtual void
 _pre ();

 virtual void
 _characters (const xml_schema::ro_string&);

 virtual std::string
 post_string ();

 protected:
 std::string str_;
 };
}

There are three new pieces in this code that we haven’t seen yet. They are the

simple_content class as well as the _pre() and _characters() functions. The

simple_content class is defined in the XSD runtime and is a base class for all parser skele

tons that conform to the simple content model in XML Schema. Types with the simple content

model cannot have nested elements—only text and attributes. There is also the

complex_content class which corresponds to the complex content mode (types with nested

elements, for example, person from people.xsd).

The _pre() function is a parser callback. Remember we talked about the pre() and

post_*() callbacks in the previous chapter? There are actually two more callbacks with similar

roles: _pre() and _post (). As a result, each parser skeleton has four special callbacks:

 virtual void
 pre ();

 virtual void
 _pre ();

 virtual void
 _post ();

 virtual void
 post_name ();

pre() and _pre() are initialization callbacks. They get called in that order before a new

instance of the type is about to be parsed. The difference between pre() and _pre() is

conventional: pre() can be completely overridden by a derived parser. The derived parser can

also override _pre() but has to always call the original version. This allows you to partition

initialization into customizable and required parts.

11September 2023 C++/Parser Mapping Getting Started Guide

3.1 Implementing the Gender Parser

Similarly, _post() and post_name() are finalization callbacks with exactly the same

semantics: post_name() can be completely overridden by the derived parser while the original

_post() should always be called.

The final bit we need to discuss in this section is the _characters() function. As you might

have guessed, it is also a callback. A low-level one that delivers raw character content for the type

being parsed. You will seldom need to use this callback directly. Using implementations for the

built-in parsers provided by the XSD runtime is usually a simpler and more convenient alterna

tive.

At this point you might be wondering why some post_*() callbacks, for example

post_string(), return some data while others, for example post_gender(), have void
as a return type. This is a valid concern and it will be addressed in the next chapter.

3.2 Implementing the Person Parser

The generated person_pskel parser skeleton looks like this:

class person_pskel: public xml_schema::complex_content
{
public:
 // Parser callbacks. Override them in your implementation.
 //
 virtual void
 pre ();

 virtual void
 first_name (const std::string&);

 virtual void
 last_name (const std::string&);

 virtual void
 gender ();

 virtual void
 age (short);

 virtual void
 post_person ();

 // Parser construction API.
 //
 void
 first_name_parser (xml_schema::string_pskel&);

 void
 last_name_parser (xml_schema::string_pskel&);

September 202312 C++/Parser Mapping Getting Started Guide

3.2 Implementing the Person Parser

 void
 gender_parser (gender_pskel&);

 void
 age_parser (xml_schema::short_pskel&);

 void
 parsers (xml_schema::string_pskel& /* first-name */,
 xml_schema::string_pskel& /* last-name */,
 gender_pskel& /* gender */,
 xml_schema::short_pskel& /* age */);
};

As you can see, we have a parser callback for each of the nested elements found in the person
XML Schema type. The implementation of this parser is straightforward:

class person_pimpl: public person_pskel
{
public:
 virtual void
 first_name (const std::string& n)
 {
 cout << "first: " << f << endl;
 }

 virtual void
 last_name (const std::string& l)
 {
 cout << "last: " << l << endl;
 }

 virtual void
 age (short a)
 {
 cout << "age: " << a << endl;
 }
};

Notice that we didn’t override the gender() callback because all the printing is done by

gender_pimpl.

3.3 Implementing the People Parser

The generated people_pskel parser skeleton looks like this:

13September 2023 C++/Parser Mapping Getting Started Guide

3.3 Implementing the People Parser

class people_pskel: public xml_schema::complex_content
{
public:
 // Parser callbacks. Override them in your implementation.
 //
 virtual void
 pre ();

 virtual void
 person ();

 virtual void
 post_people ();

 // Parser construction API.
 //
 void
 person_parser (person_pskel&);

 void
 parsers (person_pskel& /* person */);
};

The person() callback will be called after parsing each person element. While

person_pimpl does all the printing, one useful thing we can do in this callback is to print an

extra newline after each person record so that our output is more readable:

class people_pimpl: public people_pskel
{
public:
 virtual void
 person ()
 {
 cout << endl;
 }
};

Now it is time to put everything together.

3.4 Connecting the Parsers Together

At this point we have all the individual parsers implemented and can proceed to assemble them

into a complete parser for our XML vocabulary. The first step is to instantiate all the individual

parsers that we will need:

September 202314 C++/Parser Mapping Getting Started Guide

3.4 Connecting the Parsers Together

xml_schema::short_pimpl short_p;
xml_schema::string_pimpl string_p;

gender_pimpl gender_p;
person_pimpl person_p;
people_pimpl people_p;

Notice that our schema uses two built-in XML Schema types: string for the first-name
and last-name elements as well as short for age. We will use predefined parsers that come

with the XSD runtime to handle these types. The next step is to connect all the individual parsers.

We do this with the help of functions defined in the parser skeletons and marked with the "Parser

Construction API" comment. One way to do it is to connect each individual parser by calling the

*_parser() functions:

person_p.first_name_parser (string_p);
person_p.last_name_parser (string_p);
person_p.gender_parser (gender_p);
person_p.age_parser (short_p);

people_p.person_parser (person_p);

You might be wondering what happens if you do not provide a parser by not calling one of the

*_parser() functions. In that case the corresponding XML content will be skipped, including

validation. This is an efficient way to ignore parts of the document that you are not interested in.

An alternative, shorter, way to connect the parsers is by using the parsers() functions which

connects all the parsers for a given type at once:

person_p.parsers (string_p, string_p, gender_p, short_p);
people_p.parsers (person_p);

The following figure illustrates the resulting connections. Notice the correspondence between

return types of the post_*() functions and argument types of element callbacks that are

connected by the arrows.

15September 2023 C++/Parser Mapping Getting Started Guide

3.4 Connecting the Parsers Together

The last step is the construction of the document parser and invocation of the complete parser on

our sample XML instance:

xml_schema::document doc_p (people_p, "people");

people_p.pre ();
doc_p.parse ("people.xml");
people_p.post_people ();

Let’s consider xml_schema::document in more detail. While the exact definition of this

class varies depending on the underlying parser selected, here is the common part:

namespace xml_schema
{
 class document
 {
 public:
 document (xml_schema::parser_base&,
 const std::string& root_element_name,
 bool polymorphic = false);

 document (xml_schema::parser_base&,
 const std::string& root_element_namespace,
 const std::string& root_element_name,
 bool polymorphic = false);

 void
 parse (const std::string& file);

 void

September 202316 C++/Parser Mapping Getting Started Guide

3.4 Connecting the Parsers Together

 parse (std::istream&);

 ...

 };
}

xml_schema::document is a root parser for the vocabulary. The first argument to its

constructors is the parser for the type of the root element (people_impl in our case). Because

a type parser is only concerned with the element’s content and not with the element’s name, we

need to specify the root element’s name somewhere. That’s what is passed as the second and third

arguments to the document’s constructors.

There are also two overloaded parse() functions defined in the document class (there are

actually more but the others are specific to the underlying XML parser). The first version parses a

local file identified by a name. The second version reads the data from an input stream. For more

information on the xml_schema::document class refer to Chapter 7, "Document Parser and

Error Handling".

Let’s now consider a step-by-step list of actions that happen as we parse through people.xml.

The content of people.xml is repeated below for convenience.

<?xml version="1.0"?>
<people>
 <person>
 <first-name>John</first-name>
 <last-name>Doe</last-name>
 <gender>male</gender>
 <age>32</age>
 </person>
 <person>
 <first-name>Jane</first-name>
 <last-name>Doe</last-name>
 <gender>female</gender>
 <age>28</age>
 </person>
</people>

1. people_p.pre() is called from main(). We did not provide any implementation for

this callback so this call is a no-op.

2. doc_p.parse("people.xml") is called from main(). The parser opens the file and

starts parsing its content.

3. The parser encounters the root element. doc_p verifies that the root element is correct and

calls _pre() on people_p which is also a no-op. Parsing is now delegated to

people_p.

4. The parser encounters the person element. people_p determines that person_p is

responsible for parsing this element. pre() and _pre() callbacks are called on

17September 2023 C++/Parser Mapping Getting Started Guide

3.4 Connecting the Parsers Together

person_p. Parsing is now delegated to person_p.

5. The parser encounters the first-name element. person_p determines that string_p
is responsible for parsing this element. pre() and _pre() callbacks are called on

string_p. Parsing is now delegated to string_p.

6. The parser encounters character content consisting of "John". The _characters()

callback is called on string_p.

7. The parser encounters the end of first-name element. The _post() and

post_string() callbacks are called on string_p. The first_name() callback is

called on person_p with the return value of post_string(). The first_name()

implementation prints "first: John" to cout. Parsing is now returned to person_p.

8. Steps analogous to 5-7 are performed for the last-name, gender, and age elements.

9. The parser encounters the end of person element. The _post() and post_person()

callbacks are called on person_p. The person() callback is called on people_p. The

person() implementation prints a new line to cout. Parsing is now returned to

people_p.

10. Steps 4-9 are performed for the second person element.

11. The parser encounters the end of people element. The _post() callback is called on

people_p. The doc_p.parse("people.xml") call returns to main().

12. people_p.post_people() is called from main() which is a no-op.

4 Type Maps

There are many useful things you can do inside parser callbacks as they are right now. There are,

however, times when you want to propagate some information from one parser to another or to

the caller of the parser. One common task that would greatly benefit from such a possibility is

building a tree-like in-memory object model of the data stored in XML. During execution, each

individual sub-parser would create a sub-tree and return it to its parent parser which can then

incorporate this sub-tree into the whole tree.

In this chapter we will discuss the mechanisms offered by the C++/Parser mapping for returning

information from individual parsers and see how to use them to build an object model of our

people vocabulary.

4.1 Object Model

An object model for our person record example could look like this (saved in the people.hxx

file):

#include <string>
#include <vector>

enum gender
{

September 202318 C++/Parser Mapping Getting Started Guide

4 Type Maps

 male,
 female
};

class person
{
public:
 person (const std::string& first,
 const std::string& last,
 ::gender gender,
 short age)
 : first_ (first), last_ (last),
 gender_ (gender), age_ (age)
 {
 }

 const std::string&
 first () const
 {
 return first_;
 }

 const std::string&
 last () const
 {
 return last_;
 }

 ::gender
 gender () const
 {
 return gender_;
 }

 short
 age () const
 {
 return age_;
 }

private:
 std::string first_;
 std::string last_;
 ::gender gender_;
 short age_;
};

typedef std::vector<person> people;

19September 2023 C++/Parser Mapping Getting Started Guide

4.1 Object Model

While it is clear which parser is responsible for which part of the object model, it is not exactly

clear how, for example, gender_pimpl will deliver gender to person_pimpl. You might

have noticed that string_pimpl manages to deliver its value to the first_name() callback

of person_pimpl. Let’s see how we can utilize the same mechanism to propagate our own

data.

There is a way to tell the XSD compiler that you want to exchange data between parsers. More

precisely, for each type defined in XML Schema, you can tell the compiler two things. First, the

return type of the post_*() callback in the parser skeleton generated for this type. And,

second, the argument type for callbacks corresponding to elements and attributes of this type. For

example, for XML Schema type gender we can specify the return type for post_gender()
in the gender_pskel skeleton and the argument type for the gender() callback in the

person_pskel skeleton. As you might have guessed, the generated code will then pass the

return value from the post_*() callback as an argument to the element or attribute callback.

The way to tell the XSD compiler about these XML Schema to C++ mappings is with type map

files. Here is a simple type map for the gender type from the previous paragraph:

include "people.hxx";
gender ::gender ::gender;

The first line indicates that the generated code must include people.hxx in order to get the

definition for the gender type. The second line specifies that both argument and return types for

the gender XML Schema type should be the ::gender C++ enum (we use fully-qualified

C++ names to avoid name clashes). The next section will describe the type map format in detail.

We save this type map in people.map and then translate our schemas with the --type-map
option to let the XSD compiler know about our type map:

$ xsd cxx-parser --type-map people.map people.xsd

If we now look at the generated people-pskel.hxx, we will see the following changes in the

gender_pskel and person_pskel skeletons:

#include "people.hxx"

class gender_pskel: public virtual xml_schema::string_pskel
{
 virtual ::gender
 post_gender () = 0;

 ...
};

class person_pskel: public xml_schema::complex_content
{
 virtual void

September 202320 C++/Parser Mapping Getting Started Guide

4.1 Object Model

 gender (::gender);

 ...
};

Notice that #include "people.hxx" was added to the generated header file from the type

map to provide the definition for the gender enum.

4.2 Type Map File Format

Type map files are used to define a mapping between XML Schema and C++ types. The compiler

uses this information to determine return types of post_*() callbacks in parser skeletons corre

sponding to XML Schema types as well as argument types for callbacks corresponding to

elements and attributes of these types.

The compiler has a set of predefined mapping rules that map the built-in XML Schema types to

suitable C++ types (discussed below) and all other types to void. By providing your own type

maps you can override these predefined rules. The format of the type map file is presented below:

namespace <schema-namespace> [<cxx-namespace>]
{
 (include <file-name>;)*
 ([type] <schema-type> <cxx-ret-type> [<cxx-arg-type>];)*
}

Both <schema-namespace> and <schema-type> are regex patterns while

<cxx-namespace>, <cxx-ret-type>, and <cxx-arg-type> are regex pattern substitu

tions. All names can be optionally enclosed in " ", for example, to include white-spaces.

<schema-namespace> determines XML Schema namespace. Optional <cxx-namespace>

is prefixed to every C++ type name in this namespace declaration. <cxx-ret-type> is a C++

type name that is used as a return type for the post_*() callback. Optional

<cxx-arg-type> is an argument type for callbacks corresponding to elements and attributes

of this type. If <cxx-arg-type> is not specified, it defaults to <cxx-ret-type> if

<cxx-ret-type> ends with * or & (that is, it is a pointer or a reference) and

const <cxx-ret-type>& otherwise. <file-name> is a file name either in the " " or <
> format and is added with the #include directive to the generated code.

The # character starts a comment that ends with a new line or end of file. To specify a name that

contains # enclose it in " ". For example:

namespace http://www.example.com/xmlns/my my
{
 include "my.hxx";

 # Pass apples by value.

21September 2023 C++/Parser Mapping Getting Started Guide

4.2 Type Map File Format

 #
 apple apple;

 # Pass oranges as pointers.
 #
 orange orange_t*;
}

In the example above, for the http://www.example.com/xmlns/my#orange XML

Schema type, the my::orange_t* C++ type will be used as both return and argument types.

Several namespace declarations can be specified in a single file. The namespace declaration can

also be completely omitted to map types in a schema without a namespace. For instance:

include "my.hxx";
apple apple;

namespace http://www.example.com/xmlns/my
{
 orange "const orange_t*";
}

The compiler has a number of predefined mapping rules for the built-in XML Schema types

which can be presented as the following map files. The string-based XML Schema types are

mapped to either std::string or std::wstring depending on the character type selected

(see Section 5.2, "Character Type and Encoding" for more information). The binary XML

Schema types are mapped to either std::unique_ptr<xml_schema::buffer> or

std::auto_ptr<xml_schema::buffer> depending on the C++ standard selected

(C++11 or C++98, respectively; refer to the --std XSD compiler command line option for

details).

namespace http://www.w3.org/2001/XMLSchema
{
 boolean bool bool;

 byte "signed char" "signed char";
 unsignedByte "unsigned char" "unsigned char";

 short short short;
 unsignedShort "unsigned short" "unsigned short";

 int int int;
 unsignedInt "unsigned int" "unsigned int";

 long "long long" "long long";
 unsignedLong "unsigned long long" "unsigned long long";

 integer "long long" "long long";

September 202322 C++/Parser Mapping Getting Started Guide

4.2 Type Map File Format

 negativeInteger "long long" "long long";
 nonPositiveInteger "long long" "long long";

 positiveInteger "unsigned long long" "unsigned long long";
 nonNegativeInteger "unsigned long long" "unsigned long long";

 float float float;
 double double double;
 decimal double double;

 string std::string;
 normalizedString std::string;
 token std::string;
 Name std::string;
 NMTOKEN std::string;
 NCName std::string;
 ID std::string;
 IDREF std::string;
 language std::string;
 anyURI std::string;

 NMTOKENS xml_schema::string_sequence;
 IDREFS xml_schema::string_sequence;

 QName xml_schema::qname;

 base64Binary std::[unique|auto]_ptr<xml_schema::buffer>
 std::[unique|auto]_ptr<xml_schema::buffer>;
 hexBinary std::[unique|auto]_ptr<xml_schema::buffer>
 std::[unique|auto]_ptr<xml_schema::buffer>;

 date xml_schema::date;
 dateTime xml_schema::date_time;
 duration xml_schema::duration;
 gDay xml_schema::gday;
 gMonth xml_schema::gmonth;
 gMonthDay xml_schema::gmonth_day;
 gYear xml_schema::gyear;
 gYearMonth xml_schema::gyear_month;
 time xml_schema::time;
}

For more information about the mapping of the built-in XML Schema types to C++ types refer to

Chapter 6, "Built-In XML Schema Type Parsers". The last predefined rule maps anything that

wasn’t mapped by previous rules to void:

namespace .*
{
 .* void void;
}

23September 2023 C++/Parser Mapping Getting Started Guide

4.2 Type Map File Format

When you provide your own type maps with the --type-map option, they are evaluated first.

This allows you to selectively override any of the predefined rules. Note also that if you change

the mapping of a built-in XML Schema type then it becomes your responsibility to provide the

corresponding parser skeleton and implementation in the xml_schema namespace. You can

include the custom definitions into the generated header file using the --hxx-prologue-*

options.

4.3 Parser Implementations

With the knowledge from the previous section, we can proceed with creating a type map that

maps types in the people.xsd schema to our object model classes in people.hxx. In fact,

we already have the beginning of our type map file in people.map. Let’s extend it with the rest

of the types:

include "people.hxx";

gender ::gender ::gender;
person ::person;
people ::people;

There are a few things to note about this type map. We did not provide the argument types for

person and people because the default constant reference is exactly what we need. We also

did not provide any mappings for built-in XML Schema types string and short because they

are handled by the predefined rules and we are happy with the result. Note also that all C++ types

are fully qualified. This is done to avoid potential name conflicts in the generated code. Now we

can recompile our schema and move on to implementing the parsers:

$ xsd cxx-parser --xml-parser expat --type-map people.map people.xsd

Here is the implementation of our three parsers in full. One way to save typing when implement

ing your own parsers is to open the generated code and copy the signatures of parser callbacks

into your code. Or you could always auto generate the sample implementations and fill them with

your code.

#include "people-pskel.hxx"

class gender_pimpl: public gender_pskel,
 public xml_schema::string_pimpl
{
public:
 virtual ::gender
 post_gender ()
 {
 return post_string () == "male" ? male : female;
 }
};

September 202324 C++/Parser Mapping Getting Started Guide

4.3 Parser Implementations

class person_pimpl: public person_pskel
{
public:
 virtual void
 first_name (const std::string& f)
 {
 first_ = f;
 }

 virtual void
 last_name (const std::string& l)
 {
 last_ = l;
 }

 virtual void
 gender (::gender g)
 {
 gender_ = g;
 }

 virtual void
 age (short a)
 {
 age_ = a;
 }

 virtual ::person
 post_person ()
 {
 return ::person (first_, last_, gender_, age_);
 }

private:
 std::string first_;
 std::string last_;
 ::gender gender_;
 short age_;
};

class people_pimpl: public people_pskel
{
public:
 virtual void
 person (const ::person& p)
 {
 people_.push_back (p);
 }

 virtual ::people

25September 2023 C++/Parser Mapping Getting Started Guide

4.3 Parser Implementations

 post_people ()
 {
 ::people r;
 r.swap (people_);
 return r;
 }

private:
 ::people people_;
};

This code fragment should look familiar by now. Just note that all the post_*() callbacks now

have return types instead of void. Here is the implementation of the test driver for this example:

#include <iostream>

using namespace std;

int
main (int argc, char* argv[])
{
 // Construct the parser.
 //
 xml_schema::short_pimpl short_p;
 xml_schema::string_pimpl string_p;

 gender_pimpl gender_p;
 person_pimpl person_p;
 people_pimpl people_p;

 person_p.parsers (string_p, string_p, gender_p, short_p);
 people_p.parsers (person_p);

 // Parse the document to obtain the object model.
 //
 xml_schema::document doc_p (people_p, "people");

 people_p.pre ();
 doc_p.parse (argv[1]);
 people ppl = people_p.post_people ();

 // Print the object model.
 //
 for (people::iterator i (ppl.begin ()); i != ppl.end (); ++i)
 {
 cout << "first: " << i->first () << endl
 << "last: " << i->last () << endl
 << "gender: " << (i->gender () == male ? "male" : "female") << endl

September 202326 C++/Parser Mapping Getting Started Guide

4.3 Parser Implementations

 << "age: " << i->age () << endl
 << endl;
 }
}

The parser creation and assembly part is exactly the same as in the previous chapter. The parsing

part is a bit different: post_people() now has a return value which is the complete object

model. We store it in the ppl variable. The last bit of the code simply iterates over the people
vector and prints the information for each person. We save the last two code fragments to

driver.cxx and proceed to compile and test our new application:

$ c++ -std=c++11 -I.../libxsd -c driver.cxx people-pskel.cxx
$ c++ -std=c++11 -o driver driver.o people-pskel.o -lexpat
$./driver people.xml
first: John
last: Doe
gender: male
age: 32

first: Jane
last: Doe
gender: female
age: 28

5 Mapping Configuration

The C++/Parser mapping has a number of configuration parameters that determine the overall

properties and behavior of the generated code. Configuration parameters are specified with the

XSD command line options and include the C++ standard, the character type that is used by the

generated code, the underlying XML parser, whether the XML Schema validation is performed in

the generated code, and support for XML Schema polymorphism. This chapter describes these

configuration parameters in more detail. For more ways to configure the generated code refer to

the XSD Compiler Command Line Manual.

5.1 C++ Standard

The C++/Parser mapping provides support for ISO/IEC C++ 2011 (C++11) and ISO/IEC C++

1998/2003 (C++98). To select the C++ standard for the generated code we use the --std XSD

compiler command line option. While the majority of the examples in this guide use C++11, the

document explains the C++11/98 usage difference and so they can easily be converted to C++98.

27September 2023 C++/Parser Mapping Getting Started Guide

5 Mapping Configuration

https://www.codesynthesis.com/projects/xsd/documentation/xsd.xhtml

5.2 Character Type and Encoding

The C++/Parser mapping has built-in support for two character types: char and wchar_t. You

can select the character type with the --char-type command line option. The default charac

ter type is char. The string-based built-in XML Schema types are returned as either

std::string or std::wstring depending on the character type selected.

Another aspect of the mapping that depends on the character type is character encoding. For the

char character type the default encoding is UTF-8. Other supported encodings are ISO-8859-1,

Xerces-C++ Local Code Page (LPC), as well as custom encodings. You can select which encod

ing should be used in the object model with the --char-encoding command line option.

For the wchar_t character type the encoding is automatically selected between UTF-16 and

UTF-32/UCS-4 depending on the size of the wchar_t type. On some platforms (for example,

Windows with Visual C++ and AIX with IBM XL C++) wchar_t is 2 bytes long. For these

platforms the encoding is UTF-16. On other platforms wchar_t is 4 bytes long and

UTF-32/UCS-4 is used.

Note also that the character encoding that is used in the object model is independent of the encod

ings used in input and output XML. In fact, all three (object mode, input XML, and output XML)

can have different encodings.

5.3 Underlying XML Parser

The C++/Parser mapping can be used with either Xerces-C++ or Expat as the underlying XML

parser. You can select the XML parser with the --xml-parser command line option. Valid

values for this option are xerces and expat. The default XML parser is Xerces-C++.

The generated code is identical for both parsers except for the xml_schema::document class

in which some of the parse() functions are parser-specific as described in Chapter 7, "Docu

ment Parser and Error Handling".

5.4 XML Schema Validation

The C++/Parser mapping provides support for validating a commonly-used subset of W3C XML

Schema in the generated code. For the list of supported XML Schema constructs refer to

Appendix A, "Supported XML Schema Constructs".

By default validation in the generated code is disabled if the underlying XML parser is validating

(Xerces-C++) and enabled otherwise (Expat). See Section 5.3, "Underlying XML Parser" for

more information about the underlying XML parser. You can override the default behavior with

the --generate-validation and --suppress-validation command line options.

September 202328 C++/Parser Mapping Getting Started Guide

5.2 Character Type and Encoding

5.5 Support for Polymorphism

By default the XSD compiler generates non-polymorphic code. If your vocabulary uses XML

Schema polymorphism in the form of xsi:type and/or substitution groups, then you will need

to compile your schemas with the --generate-polymorphic option to produce polymor

phism-aware code as well as pass true as the last argument to the xml_schema::docu
ment’s constructors.

When using the polymorphism-aware generated code, you can specify several parsers for a single

element by passing a parser map instead of an individual parser to the parser connection function

for the element. One of the parsers will then be looked up and used depending on the xsi:type
attribute value or an element name from a substitution group. Consider the following schema as

an example:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:complexType name="person">
 <xs:sequence>
 <xs:element name="name" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>

 <!-- substitution group root -->
 <xs:element name="person" type="person"/>

 <xs:complexType name="superman">
 <xs:complexContent>
 <xs:extension base="person">
 <xs:attribute name="can-fly" type="xs:boolean"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <xs:element name="superman"
 type="superman"
 substitutionGroup="person"/>

 <xs:complexType name="batman">
 <xs:complexContent>
 <xs:extension base="superman">
 <xs:attribute name="wing-span" type="xs:unsignedInt"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <xs:element name="batman"
 type="batman"
 substitutionGroup="superman"/>

29September 2023 C++/Parser Mapping Getting Started Guide

5.5 Support for Polymorphism

 <xs:complexType name="supermen">
 <xs:sequence>
 <xs:element ref="person" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

 <xs:element name="supermen" type="supermen"/>

</xs:schema>

Conforming XML documents can use the superman and batman types in place of the

person type either by specifying the type with the xsi:type attributes or by using the

elements from the substitution group, for instance:

<supermen xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <person>
 <name>John Doe</name>
 </person>

 <superman can-fly="false">
 <name>James "007" Bond</name>
 </superman>

 <superman can-fly="true" wing-span="10" xsi:type="batman">
 <name>Bruce Wayne</name>
 </superman>

</supermen>

To print the data stored in such XML documents we can implement the parsers as follows:

class person_pimpl: public virtual person_pskel
{
public:
 virtual void
 pre ()
 {
 cout << "starting to parse person" << endl;
 }

 virtual void
 name (const std::string& v)
 {
 cout << "name: " << v << endl;
 }

 virtual void
 post_person ()
 {

September 202330 C++/Parser Mapping Getting Started Guide

5.5 Support for Polymorphism

 cout << "finished parsing person" << endl;
 }
};

class superman_pimpl: public virtual superman_pskel,
 public person_pimpl
{
public:
 virtual void
 pre ()
 {
 cout << "starting to parse superman" << endl;
 }

 virtual void
 can_fly (bool v)
 {
 cout << "can-fly: " << v << endl;
 }

 virtual void
 post_person ()
 {
 post_superman ();
 }

 virtual void
 post_superman ()
 {
 cout << "finished parsing superman" << endl
 }
};

class batman_pimpl: public virtual batman_pskel,
 public superman_pimpl
{
public:
 virtual void
 pre ()
 {
 cout << "starting to parse batman" << endl;
 }

 virtual void
 wing_span (unsigned int v)
 {
 cout << "wing-span: " << v << endl;
 }

 virtual void
 post_superman ()

31September 2023 C++/Parser Mapping Getting Started Guide

5.5 Support for Polymorphism

 {
 post_batman ();
 }

 virtual void
 post_batman ()
 {
 cout << "finished parsing batman" << endl;
 }
};

Note that because the derived type parsers (superman_pskel and batman_pskel) are

called via the person_pskel interface, we have to override the post_person() virtual

function in superman_pimpl to call post_superman() and the post_superman()
virtual function in batman_pimpl to call post_batman().

The following code fragment shows how to connect the parsers together. Notice that for the

person element in the supermen_p parser we specify a parser map instead of a specific

parser and we pass true as the last argument to the document parser constructor to indicate that

we are parsing potentially-polymorphic XML documents:

int
main (int argc, char* argv[])
{
 // Construct the parser.
 //
 xml_schema::string_pimpl string_p;
 xml_schema::boolean_pimpl boolean_p;
 xml_schema::unsigned_int_pimpl unsigned_int_p;

 person_pimpl person_p;
 superman_pimpl superman_p;
 batman_pimpl batman_p;

 xml_schema::parser_map_impl person_map;
 supermen_pimpl supermen_p;

 person_p.parsers (string_p);
 superman_p.parsers (string_p, boolean_p);
 batman_p.parsers (string_p, boolean_p, unsigned_int_p);

 // Here we are specifying a parser map which containes several
 // parsers that can be used to parse the person element.
 //
 person_map.insert (person_p);
 person_map.insert (superman_p);
 person_map.insert (batman_p);

 supermen_p.person_parser (person_map);

September 202332 C++/Parser Mapping Getting Started Guide

5.5 Support for Polymorphism

 // Parse the XML document. The last argument to the document’s
 // constructor indicates that we are parsing polymorphic XML
 // documents.
 //
 xml_schema::document doc_p (supermen_p, "supermen", true);

 supermen_p.pre ();
 doc_p.parse (argv[1]);
 supermen_p.post_supermen ();
}

When polymorphism-aware code is generated, each element’s *_parser() function is over

loaded to also accept an object of the xml_schema::parser_map type. For example, the

supermen_pskel class from the above example looks like this:

class supermen_pskel: public xml_schema::parser_complex_content
{
public:

 ...

 // Parser construction API.
 //
 void
 parsers (person_pskel&);

 // Individual element parsers.
 //
 void
 person_parser (person_pskel&);

 void
 person_parser (const xml_schema::parser_map&);

 ...
};

Note that you can specify both the individual (static) parser and the parser map. The individual

parser will be used when the static element type and the dynamic type of the object being parsed

are the same. This is the case, for example, when there is no xsi:type attribute and the element

hasn’t been substituted. Because the individual parser for an element is cached and no map

lookup is necessary, it makes sense to specify both the individual parser and the parser map when

most of the objects being parsed are of the static type and optimal performance is important. The

following code fragment shows how to change the above example to set both the individual

parser and the parser map:

33September 2023 C++/Parser Mapping Getting Started Guide

5.5 Support for Polymorphism

int
main (int argc, char* argv[])
{
 ...

 person_map.insert (superman_p);
 person_map.insert (batman_p);

 supermen_p.person_parser (person_p);
 supermen_p.person_parser (person_map);

 ...
}

The xml_schema::parser_map interface and the xml_schema::parser_map_impl
default implementation are presented below:

namespace xml_schema
{
 class parser_map
 {
 public:
 virtual parser_base*
 find (const ro_string* type) const = 0;
 };

 class parser_map_impl: public parser_map
 {
 public:
 void
 insert (parser_base&);

 virtual parser_base*
 find (const ro_string* type) const;

 private:
 parser_map_impl (const parser_map_impl&);

 parser_map_impl&
 operator= (const parser_map_impl&);

 ...
 };
}

The type argument in the find() virtual function is the type name and namespace from the

xsi:type attribute (the namespace prefix is resolved to the actual XML namespace) or the type of

an element from the substitution group in the form "<name> <namespace>" with the space

and the namespace part absent if the type does not have a namespace. You can obtain a parser’s

dynamic type in the same format using the _dynamic_type() function. The static type can be

September 202334 C++/Parser Mapping Getting Started Guide

5.5 Support for Polymorphism

obtained by calling the static _static_type() function, for example

person_pskel::_static_type(). Both functions return a C string (const char* or

const wchar_t*, depending on the character type used) which is valid for as long as the

application is running. The following example shows how we can implement our own parser map

using std::map:

#include <map>
#include <string>

class parser_map: public xml_schema::parser_map
{
public:
 void
 insert (xml_schema::parser_base& p)
 {
 map_[p._dynamic_type ()] = &p;
 }

 virtual xml_schema::parser_base*
 find (const xml_schema::ro_string* type) const
 {
 map::const_iterator i = map_.find (type);
 return i != map_.end () ? i->second : 0;
 }

private:
 typedef std::map<std::string, xml_schema::parser_base*> map;
 map map_;
};

Most of code presented in this section is taken from the polymorphism example which can be

found in the cxx/parser/ directory in the xsd-examples package. Handling of xsi:type
and substitution groups when used on root elements requires a number of special actions as

shown in the polyroot example.

6 Built-In XML Schema Type Parsers

The XSD runtime provides parser implementations for all built-in XML Schema types as summa

rized in the following table. Declarations for these types are automatically included into each

generated header file. As a result you don’t need to include any headers to gain access to these

parser implementations. Note that some parsers return either std::string or

std::wstring depending on the character type selected.

XML Schema type
Parser implementation in the

xml_schema namespace
Parser return type

anyType and anySimpleType types

35September 2023 C++/Parser Mapping Getting Started Guide

6 Built-In XML Schema Type Parsers

https://cppget.org/xsd-examples

anyType any_type_pimpl void

anySimpleType any_simple_type_pimpl void

fixed-length integral types

byte byte_pimpl signed char

unsignedByte unsigned_byte_pimpl unsigned char

short short_pimpl short

unsignedShort unsigned_short_pimpl unsigned short

int int_pimpl int

unsignedInt unsigned_int_pimpl unsigned int

long long_pimpl long long

unsignedLong unsigned_long_pimpl unsigned long long

arbitrary-length integral types

integer integer_pimpl long long

nonPositiveInteger non_positive_integer_pimpl long long

nonNegativeInteger non_negative_integer_pimpl unsigned long long

positiveInteger positive_integer_pimpl unsigned long long

negativeInteger negative_integer_pimpl long long

boolean types

boolean boolean_pimpl bool

fixed-precision floating-point types

float float_pimpl float

double double_pimpl double

arbitrary-precision floating-point types

decimal decimal_pimpl double

string-based types

string string_pimpl std::string or std::wstring

normalizedString normalized_string_pimpl std::string or std::wstring

token token_pimpl std::string or std::wstring

Name name_pimpl std::string or std::wstring

NMTOKEN nmtoken_pimpl std::string or std::wstring

September 202336 C++/Parser Mapping Getting Started Guide

6 Built-In XML Schema Type Parsers

NCName ncname_pimpl std::string or std::wstring

language language_pimpl std::string or std::wstring

qualified name

QName qname_pimpl
xml_schema::qname
Section 6.1, "QName Parser"

ID/IDREF types

ID id_pimpl std::string or std::wstring

IDREF idref_pimpl std::string or std::wstring

list types

NMTOKENS nmtokens_pimpl
xml_schema::string_sequence
Section 6.2, "NMTOKENS and IDREFS

Parsers"

IDREFS idrefs_pimpl
xml_schema::string_sequence
Section 6.2, "NMTOKENS and IDREFS

Parsers"

URI types

anyURI uri_pimpl std::string or std::wstring

binary types

base64Binary base64_binary_pimpl

std::[unique|auto]_ptr<
xml_schema::buffer>
Section 6.3, "base64Binary and

hexBinary Parsers"

hexBinary hex_binary_pimpl

std::[unique|auto]_ptr<
xml_schema::buffer>
Section 6.3, "base64Binary and

hexBinary Parsers"

date/time types

date date_pimpl
xml_schema::date
Section 6.5, "date Parser"

dateTime date_time_pimpl
xml_schema::date_time
Section 6.6, "dateTime Parser"

duration duration_pimpl
xml_schema::duration
Section 6.7, "duration Parser"

gDay gday_pimpl
xml_schema::gday
Section 6.8, "gDay Parser"

37September 2023 C++/Parser Mapping Getting Started Guide

6 Built-In XML Schema Type Parsers

gMonth gmonth_pimpl
xml_schema::gmonth
Section 6.9, "gMonth Parser"

gMonthDay gmonth_day_pimpl
xml_schema::gmonth_day
Section 6.10, "gMonthDay Parser"

gYear gyear_pimpl
xml_schema::gyear
Section 6.11, "gYear Parser"

gYearMonth gyear_month_pimpl
xml_schema::gyear_month
Section 6.12, "gYearMonth Parser"

time time_pimpl
xml_schema::time
Section 6.13, "time Parser"

6.1 QName Parser

The return type of the qname_pimpl parser implementation is xml_schema::qname which

represents an XML qualified name. Its interface is presented below. Note that the

std::string type in the interface becomes std::wstring if the selected character type is

wchar_t.

namespace xml_schema
{
 class qname
 {
 public:
 explicit
 qname (const std::string& name);
 qname (const std::string& prefix, const std::string& name);

 const std::string&
 prefix () const;

 void
 prefix (const std::string&);

 const std::string&
 name () const;

 void
 name (const std::string&);
 };

 bool
 operator== (const qname&, const qname&);

 bool
 operator!= (const qname&, const qname&);
}

September 202338 C++/Parser Mapping Getting Started Guide

6.1 QName Parser

6.2 NMTOKENS and IDREFS Parsers

The return type of the nmtokens_pimpl and idrefs_pimpl parser implementations is

xml_schema::string_sequence which represents a sequence of strings. Its interface is

presented below. Note that the std::string type in the interface becomes std::wstring
if the selected character type is wchar_t.

namespace xml_schema
{
 class string_sequence: public std::vector<std::string>
 {
 public:
 string_sequence ();

 explicit
 string_sequence (std::vector<std::string>::size_type n,
 const std::string& x = std::string ());

 template <typename I>
 string_sequence (const I& begin, const I& end);
 };

 bool
 operator== (const string_sequence&, const string_sequence&);

 bool
 operator!= (const string_sequence&, const string_sequence&);
}

6.3 base64Binary and hexBinary Parsers

The return type of the base64_binary_pimpl and hex_binary_pimpl parser implemen

tations is either std::unique_ptr<xml_schema::buffer> (C++11) or

std::auto_ptr<xml_schema::buffer> (C++98), depending on the C++ standard

selected (--std XSD compiler option). The xml_schema::buffer type represents a binary

buffer and its interface is presented below.

namespace xml_schema
{
 class buffer
 {
 public:
 typedef std::size_t size_t;

 class bounds {}; // Out of bounds exception.

 public:
 explicit

39September 2023 C++/Parser Mapping Getting Started Guide

6.2 NMTOKENS and IDREFS Parsers

 buffer (size_t size = 0);
 buffer (size_t size, size_t capacity);
 buffer (const void* data, size_t size);
 buffer (const void* data, size_t size, size_t capacity);
 buffer (void* data,
 size_t size,
 size_t capacity,
 bool assume_ownership);

 public:
 buffer (const buffer&);

 buffer&
 operator= (const buffer&);

 void
 swap (buffer&);

 public:
 size_t
 capacity () const;

 bool
 capacity (size_t);

 public:
 size_t
 size () const;

 bool
 size (size_t);

 public:
 const char*
 data () const;

 char*
 data ();

 const char*
 begin () const;

 char*
 begin ();

 const char*
 end () const;

 char*
 end ();
 };

September 202340 C++/Parser Mapping Getting Started Guide

6.3 base64Binary and hexBinary Parsers

 bool
 operator== (const buffer&, const buffer&);

 bool
 operator!= (const buffer&, const buffer&);
}

If the assume_ownership argument to the constructor is true, the instance assumes the

ownership of the memory block pointed to by the data argument and will eventually release it

by calling operator delete(). The capacity() and size() modifier functions return

true if the underlying buffer has moved.

The bounds exception is thrown if the constructor arguments violate the (size <= capac
ity) constraint.

6.4 Time Zone Representation

The date, dateTime, gDay, gMonth, gMonthDay, gYear, gYearMonth, and time
XML Schema built-in types all include an optional time zone component. The following

xml_schema::time_zone base class is used to represent this information:

namespace xml_schema
{
 class time_zone
 {
 public:
 time_zone ();
 time_zone (short hours, short minutes);

 bool
 zone_present () const;

 void
 zone_reset ();

 short
 zone_hours () const;

 void
 zone_hours (short);

 short
 zone_minutes () const;

 void
 zone_minutes (short);
 };

41September 2023 C++/Parser Mapping Getting Started Guide

6.4 Time Zone Representation

 bool
 operator== (const time_zone&, const time_zone&);

 bool
 operator!= (const time_zone&, const time_zone&);
}

The zone_present() accessor function returns true if the time zone is specified. The

zone_reset() modifier function resets the time zone object to the not specified state. If the

time zone offset is negative then both hours and minutes components are represented as negative

integers.

6.5 date Parser

The return type of the date_pimpl parser implementation is xml_schema::date which

represents a year, a day, and a month with an optional time zone. Its interface is presented below.

For more information on the base xml_schema::time_zone class refer to Section 6.4,

"Time Zone Representation".

namespace xml_schema
{
 class date
 {
 public:
 date (int year, unsigned short month, unsigned short day);
 date (int year, unsigned short month, unsigned short day,
 short zone_hours, short zone_minutes);

 int
 year () const;

 void
 year (int);

 unsigned short
 month () const;

 void
 month (unsigned short);

 unsigned short
 day () const;

 void
 day (unsigned short);
 };

 bool
 operator== (const date&, const date&);

September 202342 C++/Parser Mapping Getting Started Guide

6.5 date Parser

 bool
 operator!= (const date&, const date&);
}

6.6 dateTime Parser

The return type of the date_time_pimpl parser implementation is

xml_schema::date_time which represents a year, a month, a day, hours, minutes, and

seconds with an optional time zone. Its interface is presented below. For more information on the

base xml_schema::time_zone class refer to Section 6.4, "Time Zone Representation".

namespace xml_schema
{
 class date_time
 {
 public:
 date_time (int year, unsigned short month, unsigned short day,
 unsigned short hours, unsigned short minutes,
 double seconds);

 date_time (int year, unsigned short month, unsigned short day,
 unsigned short hours, unsigned short minutes,
 double seconds, short zone_hours, short zone_minutes);

 int
 year () const;

 void
 year (int);

 unsigned short
 month () const;

 void
 month (unsigned short);

 unsigned short
 day () const;

 void
 day (unsigned short);

 unsigned short
 hours () const;

 void
 hours (unsigned short);

 unsigned short

43September 2023 C++/Parser Mapping Getting Started Guide

6.6 dateTime Parser

 minutes () const;

 void
 minutes (unsigned short);

 double
 seconds () const;

 void
 seconds (double);
 };

 bool
 operator== (const date_time&, const date_time&);

 bool
 operator!= (const date_time&, const date_time&);
}

6.7 duration Parser

The return type of the duration_pimpl parser implementation is xml_schema::dura
tion which represents a potentially negative duration in the form of years, months, days, hours,

minutes, and seconds. Its interface is presented below.

namespace xml_schema
{
 class duration
 {
 public:
 duration (bool negative,
 unsigned int years, unsigned int months, unsigned int days,
 unsigned int hours, unsigned int minutes, double seconds);

 bool
 negative () const;

 void
 negative (bool);

 unsigned int
 years () const;

 void
 years (unsigned int);

 unsigned int
 months () const;

 void

September 202344 C++/Parser Mapping Getting Started Guide

6.7 duration Parser

 months (unsigned int);

 unsigned int
 days () const;

 void
 days (unsigned int);

 unsigned int
 hours () const;

 void
 hours (unsigned int);

 unsigned int
 minutes () const;

 void
 minutes (unsigned int);

 double
 seconds () const;

 void
 seconds (double);
 };

 bool
 operator== (const duration&, const duration&);

 bool
 operator!= (const duration&, const duration&);
}

6.8 gDay Parser

The return type of the gday_pimpl parser implementation is xml_schema::gday which

represents a day of the month with an optional time zone. Its interface is presented below. For

more information on the base xml_schema::time_zone class refer to Section 6.4, "Time

Zone Representation".

namespace xml_schema
{
 class gday
 {
 public:
 explicit
 gday (unsigned short day);
 gday (unsigned short day, short zone_hours, short zone_minutes);

45September 2023 C++/Parser Mapping Getting Started Guide

6.8 gDay Parser

 unsigned short
 day () const;

 void
 day (unsigned short);
 };

 bool
 operator== (const gday&, const gday&);

 bool
 operator!= (const gday&, const gday&);
}

6.9 gMonth Parser

The return type of the gmonth_pimpl parser implementation is xml_schema::gmonth
which represents a month of the year with an optional time zone. Its interface is presented below.

For more information on the base xml_schema::time_zone class refer to Section 6.4,

"Time Zone Representation".

namespace xml_schema
{
 class gmonth
 {
 public:
 explicit
 gmonth (unsigned short month);
 gmonth (unsigned short month, short zone_hours, short zone_minutes);

 unsigned short
 month () const;

 void
 month (unsigned short);
 };

 bool
 operator== (const gmonth&, const gmonth&);

 bool
 operator!= (const gmonth&, const gmonth&);
}

September 202346 C++/Parser Mapping Getting Started Guide

6.9 gMonth Parser

6.10 gMonthDay Parser

The return type of the gmonth_day_pimpl parser implementation is

xml_schema::gmonth_day which represents a day and a month of the year with an optional

time zone. Its interface is presented below. For more information on the base

xml_schema::time_zone class refer to Section 6.4, "Time Zone Representation".

namespace xml_schema
{
 class gmonth_day
 {
 public:
 gmonth_day (unsigned short month, unsigned short day);
 gmonth_day (unsigned short month, unsigned short day,
 short zone_hours, short zone_minutes);

 unsigned short
 month () const;

 void
 month (unsigned short);

 unsigned short
 day () const;

 void
 day (unsigned short);
 };

 bool
 operator== (const gmonth_day&, const gmonth_day&);

 bool
 operator!= (const gmonth_day&, const gmonth_day&);
}

6.11 gYear Parser

The return type of the gyear_pimpl parser implementation is xml_schema::gyear which

represents a year with an optional time zone. Its interface is presented below. For more informa

tion on the base xml_schema::time_zone class refer to Section 6.4, "Time Zone Represen

tation".

namespace xml_schema
{
 class gyear
 {
 public:

47September 2023 C++/Parser Mapping Getting Started Guide

6.10 gMonthDay Parser

 explicit
 gyear (int year);
 gyear (int year, short zone_hours, short zone_minutes);

 int
 year () const;

 void
 year (int);
 };

 bool
 operator== (const gyear&, const gyear&);

 bool
 operator!= (const gyear&, const gyear&);
}

6.12 gYearMonth Parser

The return type of the gyear_month_pimpl parser implementation is

xml_schema::gyear_month which represents a year and a month with an optional time

zone. Its interface is presented below. For more information on the base

xml_schema::time_zone class refer to Section 6.4, "Time Zone Representation".

namespace xml_schema
{
 class gyear_month
 {
 public:
 gyear_month (int year, unsigned short month);
 gyear_month (int year, unsigned short month,
 short zone_hours, short zone_minutes);

 int
 year () const;

 void
 year (int);

 unsigned short
 month () const;

 void
 month (unsigned short);
 };

 bool
 operator== (const gyear_month&, const gyear_month&);

September 202348 C++/Parser Mapping Getting Started Guide

6.12 gYearMonth Parser

 bool
 operator!= (const gyear_month&, const gyear_month&);
}

6.13 time Parser

The return type of the time_pimpl parser implementation is xml_schema::time which

represents hours, minutes, and seconds with an optional time zone. Its interface is presented

below. For more information on the base xml_schema::time_zone class refer to Section

6.4, "Time Zone Representation".

namespace xml_schema
{
 class time
 {
 public:
 time (unsigned short hours, unsigned short minutes, double seconds);
 time (unsigned short hours, unsigned short minutes, double seconds,
 short zone_hours, short zone_minutes);

 unsigned short
 hours () const;

 void
 hours (unsigned short);

 unsigned short
 minutes () const;

 void
 minutes (unsigned short);

 double
 seconds () const;

 void
 seconds (double);
 };

 bool
 operator== (const time&, const time&);

 bool
 operator!= (const time&, const time&);
}

49September 2023 C++/Parser Mapping Getting Started Guide

6.13 time Parser

7 Document Parser and Error Handling

In this chapter we will discuss the xml_schema::document type as well as the error

handling mechanisms provided by the mapping in more detail. As mentioned in Section 3.4,

"Connecting the Parsers Together", the interface of xml_schema::document depends on the

underlying XML parser selected (Section 5.3, "Underlying XML Parser"). The following sections

describe the document type interface for Xerces-C++ and Expat as underlying parsers.

7.1 Xerces-C++ Document Parser

When Xerces-C++ is used as the underlying XML parser, the document type has the following

interface. Note that if the character type is wchar_t, then the string type in the interface

becomes std::wstring (see Section 5.2, "Character Type and Encoding").

namespace xml_schema
{
 class parser_base;
 class error_handler;

 class flags
 {
 public:
 // Do not validate XML documents with the Xerces-C++ validator.
 //
 static const unsigned long dont_validate;

 // Do not initialize the Xerces-C++ runtime.
 //
 static const unsigned long dont_initialize;

 // Disable handling of subsequent imports for the same namespace
 // in Xerces-C++ 3.1.0 and later.
 //
 static const unsigned long no_multiple_imports;
 };

 class properties
 {
 public:
 // Add a location for a schema with a target namespace.
 //
 void
 schema_location (const std::string& namespace_,
 const std::string& location);

 // Add a location for a schema without a target namespace.
 //
 void

September 202350 C++/Parser Mapping Getting Started Guide

7 Document Parser and Error Handling

 no_namespace_schema_location (const std::string& location);
 };

 class document
 {
 public:
 document (parser_base& root,
 const std::string& root_element_name,
 bool polymorphic = false);

 document (parser_base& root,
 const std::string& root_element_namespace,
 const std::string& root_element_name,
 bool polymorphic = false);

 public:
 // Parse URI or a local file.
 //
 void
 parse (const std::string& uri,
 flags = 0,
 const properties& = properties ());

 // Parse URI or a local file with a user-provided error_handler
 // object.
 //
 void
 parse (const std::string& uri,
 error_handler&,
 flags = 0,
 const properties& = properties ());

 // Parse URI or a local file with a user-provided ErrorHandler
 // object. Note that you must initialize the Xerces-C++ runtime
 // before calling this function.
 //
 void
 parse (const std::string& uri,
 xercesc::ErrorHandler&,
 flags = 0,
 const properties& = properties ());

 // Parse URI or a local file using a user-provided SAX2XMLReader
 // object. Note that you must initialize the Xerces-C++ runtime
 // before calling this function.
 //
 void
 parse (const std::string& uri,
 xercesc::SAX2XMLReader&,
 flags = 0,
 const properties& = properties ());

51September 2023 C++/Parser Mapping Getting Started Guide

7.1 Xerces-C++ Document Parser

 public:
 // Parse std::istream.
 //
 void
 parse (std::istream&,
 flags = 0,
 const properties& = properties ());

 // Parse std::istream with a user-provided error_handler object.
 //
 void
 parse (std::istream&,
 error_handler&,
 flags = 0,
 const properties& = properties ());

 // Parse std::istream with a user-provided ErrorHandler object.
 // Note that you must initialize the Xerces-C++ runtime before
 // calling this function.
 //
 void
 parse (std::istream&,
 xercesc::ErrorHandler&,
 flags = 0,
 const properties& = properties ());

 // Parse std::istream using a user-provided SAX2XMLReader object.
 // Note that you must initialize the Xerces-C++ runtime before
 // calling this function.
 //
 void
 parse (std::istream&,
 xercesc::SAX2XMLReader&,
 flags = 0,
 const properties& = properties ());

 public:
 // Parse std::istream with a system id.
 //
 void
 parse (std::istream&,
 const std::string& system_id,
 flags = 0,
 const properties& = properties ());

 // Parse std::istream with a system id and a user-provided
 // error_handler object.
 //
 void
 parse (std::istream&,

September 202352 C++/Parser Mapping Getting Started Guide

7.1 Xerces-C++ Document Parser

 const std::string& system_id,
 error_handler&,
 flags = 0,
 const properties& = properties ());

 // Parse std::istream with a system id and a user-provided
 // ErrorHandler object. Note that you must initialize the
 // Xerces-C++ runtime before calling this function.
 //
 void
 parse (std::istream&,
 const std::string& system_id,
 xercesc::ErrorHandler&,
 flags = 0,
 const properties& = properties ());

 // Parse std::istream with a system id using a user-provided
 // SAX2XMLReader object. Note that you must initialize the
 // Xerces-C++ runtime before calling this function.
 //
 void
 parse (std::istream&,
 const std::string& system_id,
 xercesc::SAX2XMLReader&,
 flags = 0,
 const properties& = properties ());

 public:
 // Parse std::istream with system and public ids.
 //
 void
 parse (std::istream&,
 const std::string& system_id,
 const std::string& public_id,
 flags = 0,
 const properties& = properties ());

 // Parse std::istream with system and public ids and a user-provided
 // error_handler object.
 //
 void
 parse (std::istream&,
 const std::string& system_id,
 const std::string& public_id,
 error_handler&,
 flags = 0,
 const properties& = properties ());

 // Parse std::istream with system and public ids and a user-provided
 // ErrorHandler object. Note that you must initialize the Xerces-C++
 // runtime before calling this function.

53September 2023 C++/Parser Mapping Getting Started Guide

7.1 Xerces-C++ Document Parser

 //
 void
 parse (std::istream&,
 const std::string& system_id,
 const std::string& public_id,
 xercesc::ErrorHandler&,
 flags = 0,
 const properties& = properties ());

 // Parse std::istream with system and public ids using a user-
 // provided SAX2XMLReader object. Note that you must initialize
 // the Xerces-C++ runtime before calling this function.
 //
 void
 parse (std::istream&,
 const std::string& system_id,
 const std::string& public_id,
 xercesc::SAX2XMLReader&,
 flags = 0,
 const properties& = properties ());

 public:
 // Parse InputSource. Note that you must initialize the Xerces-C++
 // runtime before calling this function.
 //
 void
 parse (const xercesc::InputSource&,
 flags = 0,
 const properties& = properties ());

 // Parse InputSource with a user-provided error_handler object.
 // Note that you must initialize the Xerces-C++ runtime before
 // calling this function.
 //
 void
 parse (const xercesc::InputSource&,
 error_handler&,
 flags = 0,
 const properties& = properties ());

 // Parse InputSource with a user-provided ErrorHandler object.
 // Note that you must initialize the Xerces-C++ runtime before
 // calling this function.
 //
 void
 parse (const xercesc::InputSource&,
 xercesc::ErrorHandler&,
 flags = 0,
 const properties& = properties ());

 // Parse InputSource using a user-provided SAX2XMLReader object.

September 202354 C++/Parser Mapping Getting Started Guide

7.1 Xerces-C++ Document Parser

 // Note that you must initialize the Xerces-C++ runtime before
 // calling this function.
 //
 void
 parse (const xercesc::InputSource&,
 xercesc::SAX2XMLReader&,
 flags = 0,
 const properties& = properties ());
 };
}

The document class is a root parser for the vocabulary. The first argument to its constructors is

the parser for the type of the root element. The parser_base class is the base type for all

parser skeletons. The second and third arguments to the document’s constructors are the root

element’s name and namespace. The last argument, polymorphic, specifies whether the XML

documents being parsed use polymorphism. For more information on support for XML Schema

polymorphism in the C++/Parser mapping refer to Section 5.5, "Support for Polymorphism".

The rest of the document interface consists of overloaded parse() functions. The last two

arguments in each of these functions are flags and properties. The flags argument

allows you to modify the default behavior of the parsing functions. The properties argument

allows you to override the schema location attributes specified in XML documents. Note that the

schema location paths are relative to an XML document unless they are complete URIs. For

example if you want to use a local schema file then you will need to use a URI in the form

file:///absolute/path/to/your/schema.

A number of overloaded parse() functions have the system_id and public_id argu

ments. The system id is a system identifier of the resources being parsed (for example, URI or a

full file path). The public id is a public identifier of the resource (for example, an applica

tion-specific name or a relative file path). The system id is used to resolve relative paths (for

example, schema paths). In diagnostics messages the public id is used if it is available. Otherwise

the system id is used.

The error handling mechanisms employed by the document parser are described in Section 7.3,

"Error Handling".

7.2 Expat Document Parser

When Expat is used as the underlying XML parser, the document type has the following inter

face. Note that if the character type is wchar_t, then the string type in the interface becomes

std::wstring (see Section 5.2, "Character Type and Encoding").

namespace xml_schema
{
 class parser_base;
 class error_handler;

55September 2023 C++/Parser Mapping Getting Started Guide

7.2 Expat Document Parser

 class document
 {
 public:
 document (parser_base&,
 const std::string& root_element_name,
 bool polymorphic = false);

 document (parser_base&,
 const std::string& root_element_namespace,
 const std::string& root_element_name,
 bool polymorphic = false);

 public:
 // Parse a local file. The file is accessed with std::ifstream
 // in binary mode. The std::ios_base::failure exception is used
 // to report io errors (badbit and failbit).
 void
 parse (const std::string& file);

 // Parse a local file with a user-provided error_handler
 // object. The file is accessed with std::ifstream in binary
 // mode. The std::ios_base::failure exception is used to report
 // io errors (badbit and failbit).
 //
 void
 parse (const std::string& file, error_handler&);

 public:
 // Parse std::istream.
 //
 void
 parse (std::istream&);

 // Parse std::istream with a user-provided error_handler object.
 //
 void
 parse (std::istream&, error_handler&);

 // Parse std::istream with a system id.
 //
 void
 parse (std::istream&, const std::string& system_id);

 // Parse std::istream with a system id and a user-provided
 // error_handler object.
 //
 void
 parse (std::istream&,
 const std::string& system_id,
 error_handler&);

September 202356 C++/Parser Mapping Getting Started Guide

7.2 Expat Document Parser

 // Parse std::istream with system and public ids.
 //
 void
 parse (std::istream&,
 const std::string& system_id,
 const std::string& public_id);

 // Parse std::istream with system and public ids and a user-provided
 // error_handler object.
 //
 void
 parse (std::istream&,
 const std::string& system_id,
 const std::string& public_id,
 error_handler&);

 public:
 // Parse a chunk of input. You can call these functions multiple
 // times with the last call having the last argument true.
 //
 void
 parse (const void* data, std::size_t size, bool last);

 void
 parse (const void* data, std::size_t size, bool last,
 error_handler&);

 void
 parse (const void* data, std::size_t size, bool last,
 const std::string& system_id);

 void
 parse (const void* data, std::size_t size, bool last,
 const std::string& system_id,
 error_handler&);

 void
 parse (const void* data, std::size_t size, bool last,
 const std::string& system_id,
 const std::string& public_id);

 void
 parse (const void* data, std::size_t size, bool last,
 const std::string& system_id,
 const std::string& public_id,
 error_handler&);

 public:
 // Low-level Expat-specific parsing API.
 //

57September 2023 C++/Parser Mapping Getting Started Guide

7.2 Expat Document Parser

 void
 parse_begin (XML_Parser);

 void
 parse_begin (XML_Parser, const std::string& public_id);

 void
 parse_begin (XML_Parser, error_handler&);

 void
 parse_begin (XML_Parser,
 const std::string& public_id,
 error_handler&);
 void
 parse_end ();
 };
}

The document class is a root parser for the vocabulary. The first argument to its constructors is

the parser for the type of the root element. The parser_base class is the base type for all

parser skeletons. The second and third arguments to the document’s constructors are the root

element’s name and namespace. The last argument, polymorphic, specifies whether the XML

documents being parsed use polymorphism. For more information on support for XML Schema

polymorphism in the C++/Parser mapping refer to Section 5.5, "Support for Polymorphism".

A number of overloaded parse() functions have the system_id and public_id argu

ments. The system id is a system identifier of the resources being parsed (for example, URI or a

full file path). The public id is a public identifier of the resource (for example, an applica

tion-specific name or a relative file path). The system id is used to resolve relative paths. In diag

nostics messages the public id is used if it is available. Otherwise the system id is used.

The parse_begin() and parse_end() functions present a low-level, Expat-specific

parsing API for maximum control. A typical use-case would look like this (pseudo-code):

xxx_pimpl root_p;
document doc_p (root_p, "root");

root_p.pre ();
doc_p.parse_begin (xml_parser, "file.xml");

while (more_data_to_parse)
{
 // Call XML_Parse or XML_ParseBuffer.

 if (status == XML_STATUS_ERROR)
 break;
}

// Call parse_end even in case of an error to translate

September 202358 C++/Parser Mapping Getting Started Guide

7.2 Expat Document Parser

// XML and Schema errors to exceptions or error_handler
// calls.
//
doc.parse_end ();
result_type result (root_p.post_xxx ());

Note that if your vocabulary uses XML namespaces, the XML_ParserCreateNS() functions

should be used to create the XML parser. Space (XML_Char (’ ’)) should be used as a sepa

rator (the second argument to XML_ParserCreateNS()).

The error handling mechanisms employed by the document parser are described in Section 7.3,

"Error Handling".

7.3 Error Handling

There are three categories of errors that can result from running a parser on an XML document:

System, XML, and Application. The System category contains memory allocation and file/stream

operation errors. The XML category covers XML parsing and well-formedness checking as well

as XML Schema validation errors. Finally, the Application category is for application logic errors

that you may want to propagate from parser implementations to the caller of the parser.

The System errors are mapped to the standard exceptions. The out of memory condition is indi

cated by throwing an instance of std::bad_alloc. The stream operation errors are reported

either by throwing an instance of std::ios_base::failure if exceptions are enabled or by

setting the stream state.

Note that if you are parsing std::istream on which exceptions are not enabled, then you will

need to check the stream state before calling the post() callback, as shown in the following

example:

int
main (int argc, char* argv[])
{
 ...

 std::ifstream ifs (argv[1]);

 if (ifs.fail ())
 {
 cerr << argv[1] << ": unable to open" << endl;
 return 1;
 }

 root_p.pre ();
 doc_p.parse (ifs);

 if (ifs.fail ())

59September 2023 C++/Parser Mapping Getting Started Guide

7.3 Error Handling

 {
 cerr << argv[1] << ": io failure" << endl;
 return 1;
 }

 result_type result (root_p.post_xxx ());
}

The above example can be rewritten to use exceptions as shown below:

int
main (int argc, char* argv[])
{
 try
 {
 ...

 std::ifstream ifs;
 ifs.exceptions (std::ifstream::badbit | std::ifstream::failbit);
 ifs.open (argv[1]);

 root_p.pre ();
 doc_p.parse (ifs);
 result_type result (root_p.post_xxx ());
 }
 catch (const std::ifstream::failure&)
 {
 cerr << argv[1] << ": unable to open or io failure" << endl;
 return 1;
 }
}

For reporting application errors from parsing callbacks, you can throw any exceptions of your

choice. They are propagated to the caller of the parser without any alterations.

The XML errors can be reported either by throwing the xml_schema::parsing exception or

by a callback to the xml_schema::error_handler object (and xercesc::ErrorHan
dler object in case of Xerces-C++).

The xml_schema::parsing exception contains a list of warnings and errors that were accu

mulated during parsing. Note that this exception is thrown only if there was an error. This makes

it impossible to obtain warnings from an otherwise successful parsing using this mechanism. The

following listing shows the definition of xml_schema::parsing exception. Note that if the

character type is wchar_t, then the string type and output stream type in the definition become

std::wstring and std::wostream, respectively (see Section 5.2, "Character Type and

Encoding").

September 202360 C++/Parser Mapping Getting Started Guide

7.3 Error Handling

namespace xml_schema
{
 class exception: public std::exception
 {
 protected:
 virtual void
 print (std::ostream&) const = 0;
 };

 inline std::ostream&
 operator<< (std::ostream& os, const exception& e)
 {
 e.print (os);
 return os;
 }

 class severity
 {
 public:
 enum value
 {
 warning,
 error
 };
 };

 class error
 {
 public:
 error (xml_schema::severity,
 const std::string& id,
 unsigned long line,
 unsigned long column,
 const std::string& message);

 xml_schema::severity
 severity () const;

 const std::string&
 id () const;

 unsigned long
 line () const;

 unsigned long
 column () const;

 const std::string&
 message () const;

61September 2023 C++/Parser Mapping Getting Started Guide

7.3 Error Handling

 };

 std::ostream&
 operator<< (std::ostream&, const error&);

 class diagnostics: public std::vector<error>
 {
 };

 std::ostream&
 operator<< (std::ostream&, const diagnostics&);

 class parsing: public exception
 {
 public:
 parsing ();
 parsing (const xml_schema::diagnostics&);

 const xml_schema::diagnostics&
 diagnostics () const;

 virtual const char*
 what () const throw ();

 protected:
 virtual void
 print (std::ostream&) const;
 };
}

The following example shows how we can catch and print this exception. The code will print

diagnostics messages one per line in case of an error.

int
main (int argc, char* argv[])
{
 try
 {
 // Parse.
 }
 catch (const xml_schema::parsing& e)
 {
 cerr << e << endl;
 return 1;
 }
}

September 202362 C++/Parser Mapping Getting Started Guide

7.3 Error Handling

With the error_handler approach the diagnostics messages are delivered as parsing

progresses. The following listing presents the definition of the error_handler interface. Note

that if the character type is wchar_t, then the string type in the interface becomes

std::wstring (see Section 5.2, "Character Type and Encoding").

namespace xml_schema
{
 class error_handler
 {
 public:
 class severity
 {
 public:
 enum value
 {
 warning,
 error,
 fatal
 };
 };

 virtual bool
 handle (const std::string& id,
 unsigned long line,
 unsigned long column,
 severity,
 const std::string& message) = 0;
 };
}

The return value of the handle() function indicates whether parsing should continue if possi

ble. The error with the fatal severity level terminates the parsing process regardless of the

returned value. At the end of the parsing process with an error that was reported via the

error_handler object, an empty xml_schema::parsing exception is thrown to indicate

the failure to the caller. You can alter this behavior by throwing your own exception from the

handle() function.

Appendix A — Supported XML Schema Constructs

The C++/Parser mapping supports validation of the following W3C XML Schema constructs in

the generated code.

Construct Notes

Structure

element

63September 2023 C++/Parser Mapping Getting Started Guide

Appendix A — Supported XML Schema Constructs

attribute

any

anyAttribute

all

sequence

choice

complex type, empty content

complex type, mixed content

complex type, simple content extension

complex type, simple content restriction Simple type facets are not validated.

complex type, complex content extension

complex type, complex content restriction

list

Datatypes

byte

unsignedByte

short

unsignedShort

int

unsignedInt

long

unsignedLong

integer

nonPositiveInteger

nonNegativeInteger

positiveInteger

negativeInteger

September 202364 C++/Parser Mapping Getting Started Guide

Appendix A — Supported XML Schema Constructs

boolean

float

double

decimal

string

normalizedString

token

Name

NMTOKEN

NCName

language

anyURI

ID Identity constraint is not enforced.

IDREF Identity constraint is not enforced.

NMTOKENS

IDREFS Identity constraint is not enforced.

QName

base64Binary

hexBinary

date

dateTime

duration

gDay

gMonth

gMonthDay

gYear

gYearMonth

65September 2023 C++/Parser Mapping Getting Started Guide

Appendix A — Supported XML Schema Constructs

time

September 202366 C++/Parser Mapping Getting Started Guide

Appendix A — Supported XML Schema Constructs

	Preface
	About This Document
	More Information

	1 Introduction
	1.1 Mapping Overview
	1.2 Benefits

	2 Hello World Example
	2.1 Writing XML Document and Schema
	2.2 Translating Schema to C++
	2.3 Implementing Application Logic
	2.4 Compiling and Running

	3 Parser Skeletons
	3.1 Implementing the Gender Parser
	3.2 Implementing the Person Parser
	3.3 Implementing the People Parser
	3.4 Connecting the Parsers Together

	4 Type Maps
	4.1 Object Model
	4.2 Type Map File Format
	4.3 Parser Implementations

	5 Mapping Configuration
	5.1 C++ Standard
	5.2 Character Type and Encoding
	5.3 Underlying XML Parser
	5.4 XML Schema Validation
	5.5 Support for Polymorphism

	6 Built-In XML Schema Type Parsers
	6.1 QName Parser
	6.2 NMTOKENS and IDREFS Parsers
	6.3 base64Binary and hexBinary Parsers
	6.4 Time Zone Representation
	6.5 date Parser
	6.6 dateTime Parser
	6.7 duration Parser
	6.8 gDay Parser
	6.9 gMonth Parser
	6.10 gMonthDay Parser
	6.11 gYear Parser
	6.12 gYearMonth Parser
	6.13 time Parser

	7 Document Parser and Error Handling
	7.1 Xerces-C++ Document Parser
	7.2 Expat Document Parser
	7.3 Error Handling

	Appendix A ž Supported XML Schema Constructs

