
CLI Language

Getting Started Guide

Copyright © 2009 Code Synthesis Tools CC

Permission is granted to copy, distribute, and/or modify this document under the terms of the
MIT License.

This document is available in the following formats: XHTML, PDF, and PostScript.

http://www.codesynthesis.com/licenses/mit.txt
http://www.codesynthesis.com/projects/cli/doc/cli.xhtml
http://www.codesynthesis.com/mailman/listinfo/cli-users
http://www.codesynthesis.com/pipermail/cli-users/

Table of Contents
.................. 11 Introduction
............... 12 Hello World Example
........... 12.1 Defining Command Line Interface
........... 22.2 Translating CLI Definitions to C++
........... 32.3 Implementing Application Logic
............. 42.4 Compiling and Running
.............. 52.5 Adding Documentation
................. 63 CLI Language
............. 63.1 Option Class Definition
............... 133.2 Option Definition
.............. 153.3 Option Documentation
............... 173.4 Include Directive
.............. 183.5 Namespace Definition

iDecember 2009 CLI Language Getting Started Guide

Table of Contents

1 Introduction
Command Line Interface (CLI) definition language is a domain-specific language (DSL) for
defining command line interfaces of C++ programs. CLI definitions are automatically translated
to C++ classes using the CLI compiler. These classes implement parsing of the command line
arguments and provide a convenient and type-safe interface for accessing the extracted data.

Beyond this guide, you may also find the following sources of information useful:

CLI Compiler Command Line Manual
The INSTALL file in the CLI distribution provides build instructions for various platforms.
The examples/ directory in the CLI distribution contains a collection of examples and a
README file with an overview of each example.
The cli-users mailing list is the place to ask technical questions about the CLI language and
compiler. Furthermore, the cli-users mailing list archives may already have answers to some
of your questions.

2 Hello World Example
In this chapter we will examine how to define a very simple command line interface in CLI,
translate this interface to C++, and use the result in an application. The code presented in this
chapter is based on the hello example which can be found in the examples/hello/ direc-
tory of the CLI distribution.

2.1 Defining Command Line Interface

Our hello application is going to print a greeting line for each name supplied on the command
line. It will also support two command line options, --greeting and --exclamations ,
that can be used to customize the greeting line. The --greeting option allows us to specify the
greeting phrase instead of the default "Hello" . The --exclamations option is used to
specify how many exclamation marks should be printed at the end of each greeting. We will also
support the --help option which triggers printing of the usage information.

We can now write a description of the above command line interface in the CLI language and
save it into hello.cli :

1December 2009 CLI Language Getting Started Guide

1 Introduction

http://www.codesynthesis.com/projects/cli/doc/cli.xhtml
http://www.codesynthesis.com/mailman/listinfo/cli-users
http://www.codesynthesis.com/pipermail/cli-users/

include <string>;

class options
{
 bool --help;
 std::string --greeting = "Hello";
 unsigned int --exclamations = 1;
};

While some details in the above code fragment might not be completely clear (the CLI language
is covered in greater detail in the next chapter), it should be easy to connect declarations in
hello.cli to the command line interface described in the preceding paragraphs. The next step
is to translate this interface specification to C++.

2.2 Translating CLI Definitions to C++

Now we are ready to translate hello.cli to C++. To do this we invoke the CLI compiler from
a terminal (UNIX) or a command prompt (Windows):

$ cli hello.cli

This invocation of the CLI compiler produces three C++ files: hello.hxx hello.ixx , and
hello.cxx . You can change the file name extensions for these files with the compiler
command line options. See the CLI Compiler Command Line Manual for more information.

The following code fragment is taken from hello.hxx ; it should give you an idea about what
gets generated:

#include <string>

class options
{
public:
 options (int argc, char** argv);
 options (int argc, char** argv, int& end);

 // Option accessors.
 //
public:
 bool
 help () const;

 const std::string&
 greeting () const;

 unsigned int
 exclamations () const;

December 20092 CLI Language Getting Started Guide

2.2 Translating CLI Definitions to C++

http://www.codesynthesis.com/projects/cli/doc/cli.xhtml

private:
 ..
};

The options C++ class corresponds to the options CLI class. For each option in this CLI
class an accessor function is generated inside the C++ class. The options C++ class also
defines a number of overloaded constructs that we can use to parse the argc/argv array. Let’s
now see how we can use this generated class to implement option parsing in our hello applica-
tion.

2.3 Implementing Application Logic

At this point we have everything we need to implement our application:

#include <iostream>
#include "hello.hxx"

using namespace std;

void
usage ()
{
 cerr << "usage: driver [options] <names>" << endl
 << "options:" << endl;
 options::print_usage (cerr);
}

int
main (int argc, char* argv[])
{
 try
 {
 int end; // End of options.
 options o (argc, argv, end);

 if (o.help ())
 {
 usage ();
 return 0;
 }

 if (end == argc)
 {
 cerr << "no names provided" << endl;
 usage ();
 return 1;
 }

3December 2009 CLI Language Getting Started Guide

2.3 Implementing Application Logic

 // Print the greetings.
 //
 for (int i = end; i < argc; i++)
 {
 cout << o.greeting () << ", " << argv[i];

 for (unsigned int j = 0; j < o.exclamations (); j++)
 cout << ’!’;

 cout << endl;
 }
 }
 catch (const cli::exception& e)
 {
 cerr << e << endl;
 usage ();
 return 1;
 }
}

At the beginning of our application we create the options object which parses the command
line. The end variable contains the index of the first non-option argument. We then access the
option values as needed during the application execution. We also catch and print
cli::exception in case something goes wrong, for example, an unknown option is specified
or an option value is invalid.

2.4 Compiling and Running

After saving our application from the previous section in driver.cxx , we are ready to build
and run our program. On UNIX this can be done with the following commands:

$ c++ -o driver driver.cxx hello.cxx

$./driver world
Hello, world!

$./driver --greeting Hi --exclamations 3 John Jane
Hi, John!!!
Hi, Jane!!!

We can also test the error handling:

$./driver -n 3 Jane
unknown option ’-n’
usage: driver [options] <names>
options:
--help
--greeting <arg>
--exclamations <arg>

December 20094 CLI Language Getting Started Guide

2.4 Compiling and Running

$./driver --exclamations abc Jane
invalid value ’abc’ for option ’--exclamations’
usage: driver [options] <names>
options:
--help
--greeting <arg>
--exclamations <arg>

2.5 Adding Documentation

As we have seen in the previous sections, the options C++ class provides the
print_usage() function which we can use to display the application usage information.
Right now this information is very basic and does not include any description of the purpose of
each option:

$./driver --help
usage: driver [options] <names>
options:
--help
--greeting <arg>
--exclamations <arg>

To make the usage information more descriptive we can document each option in the command
line interface definition. This information can also be used to automatically generate program
documentation in various formats, such as HTML and man page. For example:

include <string>;

class options
{
 bool --help {"Print usage information and exit."};

 std::string --greeting = "Hello"
 {
 "<text>",
 "Use <text> as a greeting phrase instead of the default \"Hello\"."
 };

 unsigned int --exclamations = 1
 {
 "<num>",
 "Print <num> exclamation marks instead of 1 by default."
 };
};

5December 2009 CLI Language Getting Started Guide

2.5 Adding Documentation

If we now save this updated command line interface to hello.cli and recompile our applica-
tion, the usage information printed by the program will look like this:

usage: driver [options] <names>
options:
--help Print usage information and exit.
--greeting <text> Use <text> as a greeting phrase instead of the
 default "Hello".
--exclamations <num> Print <num> exclamation marks instead of 1 by
 default.

We can also generate the program documentation in the HTML (--generate-html CLI
option) and man page (--generate-man CLI option) formats. For example:

$ cli --generate-html hello.cli

The resulting hello.html file contains the following documentation:

--help
Print usage information and exit.

--greeting text
Use text as a greeting phrase instead of the default "Hello".

--exclamations num
Print num exclamation marks instead of 1 by default.

This HTML fragment can be combined with custom prologue and epilogue to create a complete
program documentation (--html-prologue/--html-epilogue options for the HTML
output, --man-prologue/--man-epilogue options for the man page output). For an
example of such complete documentation see the CLI Compiler Command Line Manual and the
cli(1) man page. For more information on the option documentation syntax, see Section 3.3,
Option Documentation.

3 CLI Language
This chapter describes the CLI language and its mapping to C++. A CLI file consists of zero or
more Include Directives followed by one or more Namespace Definitions or Option Class Defini-
tions. C and C++-style comments can be used anywhere in the CLI file except in character and
string literals.

3.1 Option Class Definition

The central part of the CLI language is option class. An option class contains one or more option
definitions, for example:

December 20096 CLI Language Getting Started Guide

3 CLI Language

http://www.codesynthesis.com/projects/cli/doc/cli.xhtml

class options
{
 bool --help;
 int --compression;
};

If we translate the above CLI fragment to C++, we will get a C++ class with the following inter-
face:

class options
{
public:
 options (int& argc,
 char** argv,
 bool erase = false,
 cli::unknown_mode opt_mode = cli::unknown_mode::fail,
 cli::unknown_mode arg_mode = cli::unknown_mode::stop);

 options (int start,
 int& argc,
 char** argv,
 bool erase = false,
 cli::unknown_mode opt_mode = cli::unknown_mode::fail,
 cli::unknown_mode arg_mode = cli::unknown_mode::stop);

 options (int& argc,
 char** argv,
 int& end,
 bool erase = false,
 cli::unknown_mode opt_mode = cli::unknown_mode::fail,
 cli::unknown_mode arg_mode = cli::unknown_mode::stop);

 options (int start,
 int& argc,
 char** argv,
 int& end,
 bool erase = false,
 cli::unknown_mode opt_mode = cli::unknown_mode::fail,
 cli::unknown_mode arg_mode = cli::unknown_mode::stop);

 options (cli::scanner&,
 cli::unknown_mode opt_mode = cli::unknown_mode::fail,
 cli::unknown_mode arg_mode = cli::unknown_mode::stop);

 options (const options&);

 options&
 operator= (const options&);

public:
 static void

7December 2009 CLI Language Getting Started Guide

3.1 Option Class Definition

 print_usage (std::ostream&);

public:
 bool
 help () const;

 int
 compression () const;
};

An option class is mapped to a C++ class with the same name. The C++ class defines a set of
public overloaded constructors, a public copy constructor and an assignment operator, as well as
a set of public accessor functions and, if the --generate-modifier CLI compiler option is
specified, modifier functions corresponding to option definitions. It also defines a public static
print_usage() function that can be used to print the usage information for the options
defined by the class.

The argc/argv arguments in the overloaded constructors are used to pass the command line
arguments array, normally as passed to main() . The start argument is used to specify the
position in the arguments array from which the parsing should start. The constructors that don’t
have this argument, start from position 1, skipping the executable name in argv[0] . The end
argument is used to return the position in the arguments array where the parsing of options
stopped. This is the position of the first program argument, if any. If the erase argument is
true , then the recognized options and their values are removed from the argv array and the
argc count is updated accordingly.

The opt_mode and arg_mode arguments specify the parser behavior when it encounters an
unknown option and argument, respectively. The unknown_mode type is part of the generated
CLI runtime support code. It has the following interface:

namespace cli
{
 class unknown_mode
 {
 public:
 enum value
 {
 skip,
 stop,
 fail
 };

 unknown_mode (value v);
 operator value () const;
 };
}

December 20098 CLI Language Getting Started Guide

3.1 Option Class Definition

If the mode is skip , the parser skips an unknown option or argument and continue parsing. If the
mode is stop , the parser stops the parsing process. The position of the unknown entity is stored
in the end argument. If the mode is fail , the parser throws the cli::unknown_option or
cli::unknown_argument exception (described blow) on encountering an unknown option
or argument, respectively.

Instead of the argc/argv arguments, the last overloaded constructor accepts the
cli::scanner object. It is part of the generated CLI runtime support code and has the follow-
ing abstract interface:

namespace cli
{
 class scanner
 {
 public:
 virtual bool
 more () = 0;

 virtual const char*
 peek () = 0;

 virtual const char*
 next () = 0;

 virtual void
 skip () = 0;
 };
}

The CLI runtime also provides two implementations of this interface: cli::argv_scanner
and cli::argv_file_scanner . The first implementation is a simple scanner for the argv
array (it is used internally by all the other constructors) and has the following interface:

namespace cli
{
 class argv_scanner
 {
 public:
 argv_scanner (int& argc, char** argv, bool erase = false);
 argv_scanner (int start, int& argc, char** argv, bool erase = false);

 int
 end () const;

 ...
 };
}

9December 2009 CLI Language Getting Started Guide

3.1 Option Class Definition

The cli::argv_file_scanner implementation provides support for reading command line
arguments from the argv array as well as files specified with command line options. It is gener-
ated only if explicitly requested with the --generate-file-scanner CLI compiler option
and has the following interface:

namespace cli
{
 class argv_file_scanner
 {
 public:
 argv_file_scanner (int& argc,
 char** argv,
 const std::string& file_option,
 bool erase = false);

 argv_file_scanner (int start,
 int& argc,
 char** argv,
 const std::string& file_option,
 bool erase = false);
 ...
 };
}

The file_option argument is used to pass the option name that should be recognized as spec-
ifying the file containing additional options. Such a file contains a set of options, each appearing
on a separate line optionally followed by space and an option value. Empty lines and lines start-
ing with # are ignored. The semantics of providing options in a file is equivalent to providing the
same set of options in the same order on the command line at the point where the options file is
specified, except that shell escaping and quoting is not required. Multiple files can be specified by
including several file options on the command line or inside other files.

The parsing constructor (those with the argc/argv or cli::scanner arguments) can throw
the following exceptions: cli::unknown_option , cli::unknown_argument ,
cli::missing_value , and cli::invalid_value . The first two exceptions are thrown
on encountering unknown options and arguments, respectively, as described above. The
missing_value exception is thrown when an option value is missing. The invalid_value
exception is thrown when an option value is invalid, for example, a non-integer value is specified
for an option of type int .

Furthermore, all scanners (and thus the parsing constructors that call them) can throw the
cli::eos_reached exception which indicates that one of the peek() , next() , or
skip() functions were called while more() returns false . Catching this exception normally
indicates an error in an option parser implementation. The argv_file_scanner class can
also throw the cli::file_io_failure exception which indicates that a file could not be
opened or there was a reading error.

December 200910 CLI Language Getting Started Guide

3.1 Option Class Definition

All CLI exceptions are derived from the common cli::exception class which implements
the polymorphic std::ostream insertion. For example, if you catch the
cli::unknown_option exception as cli::exception and print it to std::cerr , you
will get the error message corresponding to the unknown_option exception.

The exceptions described above are part of the generated CLI runtime support code and have the
following interfaces:

#include <exception>

namespace cli
{
 class exception: public std::exception
 {
 public:
 virtual void
 print (std::ostream&) const = 0;
 };

 inline std::ostream&
 operator<< (std::ostream& os, const exception& e)
 {
 e.print (os);
 return os;
 }

 class unknown_option: public exception
 {
 public:
 unknown_option (const std::string& option);

 const std::string&
 option () const;

 virtual void
 print (std::ostream&) const;

 virtual const char*
 what () const throw ();
 };

 class unknown_argument: public exception
 {
 public:
 unknown_argument (const std::string& argument);

 const std::string&
 argument () const;

 virtual void

11December 2009 CLI Language Getting Started Guide

3.1 Option Class Definition

 print (std::ostream&) const;

 virtual const char*
 what () const throw ();
 };

 class missing_value: public exception
 {
 public:
 missing_value (const std::string& option);

 const std::string&
 option () const;

 virtual void
 print (std::ostream&) const;

 virtual const char*
 what () const throw ();
 };

 class invalid_value: public exception
 {
 public:
 invalid_value (const std::string& option,
 const std::string& value);

 const std::string&
 option () const;

 const std::string&
 value () const;

 virtual void
 print (std::ostream&) const;

 virtual const char*
 what () const throw ();
 };

 class eos_reached: public exception
 {
 public:
 virtual void
 print (std::ostream&) const;

 virtual const char*
 what () const throw ();
 };

 class file_io_failure: public exception

December 200912 CLI Language Getting Started Guide

3.1 Option Class Definition

 {
 public:
 file_io_failure (const std::string& file);

 const std::string&
 file () const;

 virtual void
 print (std::ostream&) const;

 virtual const char*
 what () const throw ();
 };
}

3.2 Option Definition

An option definition consists of four components: type, name, default value, and documentation.
An option type can be any C++ type as long as its string representation can be parsed using the
std::istream interface. If the option type is user-defined then you will need to include its
declaration using the Include Directive.

An option of a type other than bool is expected to have a value. An option of type bool is
treated as a flag and does not have a value. That is, a mere presence of such an option on the
command line sets this option’s value to true .

The name component specifies the option name as it will be entered in the command line. A
name can contain any number of aliases separated by | . The C++ accessor and modifier function
names are derived from the first name by removing any leading special characters, such as - , / ,
etc., and replacing special characters in other places with underscores. For example, the following
option definition:

class options
{
 int --compression-level | --comp | -c;
};

Will result in the following accessor function:

class options
{
 int
 compression_level () const;
};

13December 2009 CLI Language Getting Started Guide

3.2 Option Definition

While any option alias can be used on the command line to specify this option’s value.

If the option name conflicts with one of the CLI language keywords, it can be specified as a string
literal:

class options
{
 bool "int";
};

The following component of the option definition is the optional default value. If the default
value is not specified, then the option is initialized with the default constructor. In particular, this
means that a bool option will be initialized to false , an int option will be initialized to 0,
etc.

Similar to C++ variable initialization, the default option value can be specified using two syntac-
tic forms: an assignment initialization and constructor initialization. The two forms are equivalent
except that the constructor initialization can be used with multiple arguments, for example:

include <string>;

class options
{
 int -i1 = 5;
 int -i2 (5);

 std::string -s1 = "John";
 std::string -s2 ("Mr John Doe", 8, 3);
};

The assignment initialization supports character, string, boolean, and simple integer literals
(including negative integers) as well as identifiers. For more complex expressions use the
constructor initialization or wrap the expressions in parenthesis, for example:

include "constants.hxx"; // Defines default_value.

class options
{
 int -a = default_value;
 int -b (25 * 4);
 int -c = (25 / default_value + 3);
};

By default, when an option is specified two or more times on the command line, the last value
overrides all the previous ones. However, a number of standard C++ containers are handled
differently to allow collecting multiple option values or building key-value maps. These contain-
ers are std::vector , std::set , and std::map .

December 200914 CLI Language Getting Started Guide

3.2 Option Definition

When std::vector or std::set is specified as an option type, all the values for this option
are inserted into the container in the order they are encountered. As a result, std::vector will
contain all the values, including duplicates while std::set will contain all the unique values.
For example:

include <set>;
include <vector>;

class options
{
 std::vector<int> --vector | -v;
 std::set<int> --set | -s;
};

If we have a command line like this: -v 1 -v 2 -v 1 -s 1 -s 2 -s 1 , then the vector
returned by the vector() accessor function will contain three elements: 1, 2, and 1 while the
set returned by the set() accessor will contain two elements: 1 and 2.

When std::map is specified as an option type, the option value is expected to have two parts:
the key and the value, separated by =. All the option values are then parsed into key/value pairs
and inserted into the map. For example:

include <map>;
include <string>;

class options
{
 std::map<std::string, std::string> --map | -m;
};

The possible option values for this interface are: -m a=A , -m =B (key is an empty string), -m
c= (value is an empty string), or -m d (same as -m d=).

The last component in the option definition is optional documentation. It is discussed in the next
section.

3.3 Option Documentation

Option documentation mimics C++ string array initialization: it is enclosed in {} and consists of
one or more documentation strings separated by a comma, for example:

class options
{
 int --compression = 5
 {
 "<level>",
 "Set compression to <level> instead of 5 by default.

15December 2009 CLI Language Getting Started Guide

3.3 Option Documentation

 With the higher compression levels the program may produce a
 smaller output but may also take longer and use more memory."
 };
};

The option documentation consists of a maximum of three documentation strings. The first string
is the value documentation string. It describes the option value and is only applicable to options
with types other than bool (options of type bool are flags and don’t have an explicit value).
The second string (or the first string for options of type bool) is the short documentation string.
It provides a brief description of the option. The last entry in the option documentation is the long
documentation string. It provides a detailed description of the option. The short documentation
string is optional. If only two strings are present in the option documentation (one string for
options of type bool), then the second (first) string is assumed to be the long documentation
string.

Option documentation is used to print the usage information as well as to generate program docu-
mentation in the HTML and man page formats. For usage information the short documentation
string is used if provided. If only the long string is available, then, by default, only the first
sentence from the long string is used. You can override this behavior and include the complete
long string in the usage information by specifying the --long-usage CLI compiler option.
When generating the program documentation, the long documentation strings are always used.

The value documentation string can contain text enclosed in <> which is automatically recog-
nized by the CLI compiler and typeset according to the selected output in all three documentation
strings. For example, in usage the level value for the --compression option presented
above will be displayed as <level> while in the HTML and man page output it will be typeset
in italic as level. Here is another example using the std::map type:

include <map>;
include <string>;

class options
{
 std::map<std::string, std::string> --map
 {
 "<key>=<value>",
 "Add the <key>, <value> pair to the map."
 };
};

The resulting HTML output for this option would look like this:

--map key=value
Add the key, value pair to the map.

December 200916 CLI Language Getting Started Guide

3.3 Option Documentation

As you might have noticed from the examples presented so far, the documentation strings can
span multiple lines which is not possible in C++. Also, all three documentation strings support
the following basic formatting mechanisms. The start of a new paragraph is indicated by a blank
line. A fragment of text can be typeset in monospace font (normally used for code fragments) by
enclosing it in the \c{} block. Similarly, text can be typeset in bold or italic fonts using the
\b{} and \i{} blocks, respectively. You can also combine several font properties in a single
block, for example, \cb{bold code} . If you need to include literal } in a formatting block,
you can use the \} escape sequence, for example, \c{int a[] = {1, 2\}} . The following
example shows how we can use these mechanisms:

class options
{
 int --compression = 5
 {
 "<level>",
 "Set compression to <level> instead of 5 by default.

 With the higher compression levels the program \i{may}
 produce a smaller output but may also \b{take longer}
 and \b{use more memory}."
 };
};

The resulting HTML output for this option would look like this:

--compression level
Set compression to level instead of 5 by default.

With the higher compression levels the program may produce a smaller output but may also
take longer and use more memory.

3.4 Include Directive

If you are using user-defined types in your option definitions, you will need to include their
declarations with the include directive. Include directives can use < > or " " -enclosed paths.
The CLI compiler does not actually open or read these files. Instead, the include directives are
translated to C++ preprocessor #include directives in the generated C++ header file. For
example, the following CLI definition:

include <string>;
include "types.hxx"; // Defines the name_type class.

class options
{
 std::string --string;
 name_type --name;
};

17December 2009 CLI Language Getting Started Guide

3.4 Include Directive

Will result in the following C++ header file:

#include <string>
#include "types.hxx"

class options
{
 ...

 const std::string&
 string () const;

 const name_type&
 name () const;

 ...
};

Without the #include directives the std::string and name_type types in the options
class would be undeclared and result in compilation errors.

3.5 Namespace Definition

Option classes can be placed into namespaces which are translated directly to C++ namespaces.
For example:

namespace compiler
{
 namespace lexer
 {
 class options
 {
 int --warning-level = 0;
 };
 }

 namespace parser
 {
 class options
 {
 int --warning-level = 0;
 };
 }

 namespace generator
 {
 class options
 {

December 200918 CLI Language Getting Started Guide

3.5 Namespace Definition

 int --target-width = 32;
 };
 }
}

The above CLI namespace structure would result in the equivalent C++ namespaces structure:

namespace compiler
{
 namespace lexer
 {
 class options
 {
 int
 warning_level () const;
 };
 }

 namespace parser
 {
 class options
 {
 int
 warning_level () const;
 };
 }

 namespace generator
 {
 class options
 {
 int
 target_width () const;
 };
 }
}

19December 2009 CLI Language Getting Started Guide

3.5 Namespace Definition

	1 Introduction
	2 Hello World Example
	2.1 Defining Command Line Interface
	2.2 Translating CLI Definitions to C++
	2.3 Implementing Application Logic
	2.4 Compiling and Running
	2.5 Adding Documentation

	3 CLI Language
	3.1 Option Class Definition
	3.2 Option Definition
	3.3 Option Documentation
	3.4 Include Directive
	3.5 Namespace Definition

